PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Demarcation energy properties of regenerated fiber Bragg grating sensors in few-mode fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, thermal regeneration of fiber Bragg gratings inscribed in single-mode fibers, two-mode step index fibers and four-mode step index fibers is performed, where the single-mode fibers are used as the reference in the analysis. Specifically, we investigate the behavior of the thermal decay, recovery and eventually the permanent erasure of the gratings in the temperature range from 25 to 1300°C. In the domain of demarcation energy, the thermal responses of the gratings can be normalized and they share similar characteristic curves despite the different temperature ramping rates used in the annealing treatment. It is found that the demarcation energy at the regeneration point and the attempt-to-escape frequency for each grating can be associated with the confinement factors of the fibers. The finding in this work has provided a new insight in the manufacture of regenerated fiber Bragg grating sensors by using few-mode fibers for multiparameter sensing in high temperature environments.
Czasopismo
Rocznik
Strony
263--271
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • School of Physics, Northwest University, Xi’an, Shaanxi 710069, China
autor
  • Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
  • [1] MAN-HONG LAI, GUNAWARDENA D.S., KOK-SING LIM, MACHAVARAM V.R., SAY-HOE LEE, WU-YI CHONG, YEN-SIAN LEE, AHMAD H., Thermal activation of regenerated fiber Bragg grating in few mode fibers, Optical Fiber Technology 28, 2016, pp. 7–10.
  • [2] HANG ZHOU YANG, XUE GUANG QIAO, DAS S., PAUL M.C., Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber, Optics Letters 39(22), 2014, pp. 6438–6441.
  • [3] MAN-HONG LAI, GUNAWARDENA D.S., KOK-SING LIM, HANG-ZHOU YANG, AHMAD H., Observation of grating regeneration by direct CO2 laser annealing, Optics Express 23(1), 2015, pp. 452–463.
  • [4] COOK K., LI-YANG SHAO, CANNING J., Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre, Optical Materials Express 2(12), 2012, pp. 1733–1742.
  • [5] BARRERA D., SALES S., High-temperature optical sensor based in high birefringence regenerated FBGs and a simple interrogation scheme, Proceedings of SPIE 8794, 2013, article ID 87941K.
  • [6] MAN-HONG LAI, KOK-SING LIM, GUNAWARDENA D.S., HANG-ZHOU YANG, WU-YI CHONG, AHMAD H., Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing, Optics Letters 40(5), 2015, pp. 748–751.
  • [7] CANNING J., STEVENSON M., BANDYOPADHYAY S., COOK K., Extreme silica optical fibre gratings, Sensors 8(10), 2008, pp. 6448–6452.
  • [8] LINDNER E., CHOJETZTKI C., BRUECKNER S., BECKER M., ROTHHARDT M., VLEKKEN J., BARTELT H., Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks, Sensors 9(10), 2009, pp. 8377–8381.
  • [9] NAGENDRA N., RAMAMURTY U., GOH T.T., LI Y., Effect of crystallinity on the impact toughness of a La-based bulk metallic glass, Acta Materialia 48(10), 2000, pp. 2603–2615.
  • [10] JIAFANG BEI, MONRO T.M., HEMMING A., EBENDORFF-HEIDEPRIEM H., Reduction of scattering loss in fluoroindate glass fibers, Optical Materials Express 3(9), 2013, pp. 1285–1301.
  • [11] GUNAWARDENA D.S., MAN-HONG LAI, KOK-SING LIM, ALI M.M., AHMAD H., Measurement of grating visibility of a fiber Bragg grating based on bent-spectral analysis, Applied Optics 54(5), 2015, pp. 1146–1151.
  • [12] BANDYOPADHYAY S., CANNING J., STEVENSON M., COOK K., Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm, Optics Letters 33(16), 2008, pp. 1917–1919.
  • [13] NAIDU M., Engineering Physics, Pearson Education India, 2013.
  • [14] FATIH YAMAN, NENG BAI, BENYUAN ZHU, TING WANG, GUIFANG LI, Long distance transmission in few-mode fibers, Optics Express 18(12), 2010, pp. 13250–13257.
  • [15] VENGSARKAR A.M., MICHIE W.C., JANKOVIC L., CULSHAW B., CLAUS R.O., Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature, Journal of Lightwave Technology 12(1), 1994, pp. 170–177.
  • [16] AN LI, YIFEI WANG, QIAN HU, SHIEH W., Few-mode fiber based optical sensors, Optics Express 23(2), 2015, pp. 1139–1150.
  • [17] GUNAWARDENA D.S., MAN-HONG LAI, KOK-SING LIM, AHMAD H., Thermal decay analysis of fiber Bragg gratings at different temperature annealing rates using demarcation energy approximation, Optical Fiber Technology 34, 2017, pp. 16–19.
  • [18] ERDOGAN T., MIZRAHI V., LEMAIRE P.J., MONROE D., Decay of ultraviolet-induced fiber Bragg gratings, Journal of Applied Physics 76(1), 1994, pp. 73–80.
  • [19] RATHJE J., KRISTENSEN M., PEDERSEN J.E., Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings, Journal of Applied Physics 88(2), 2000, pp. 1050–1055.
  • [20] PAL S., MANDAL J., TONG SUN, GRATTAN K.T.V., Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating, Applied Optics 42(12), 2003, pp. 2188–2197.
  • [21] GUNAWARDENA D.S., MAN-HONG LAI, KOK-SING LIM, MALEKMOHAMMADI A., AHMAD H., Fabrication of thermal enduring FBG sensor based on thermal induced reversible effect, Sensors and Actuators A: Physical 242, 2016, pp. 111–115.
  • [22] TAO WANG, LI-YANG SHAO, CANNING J., COOK K., Temperature and strain characterization of regenerated gratings, Optics Letters 38(3), 2013, pp. 247–249.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f47e5e5d-db05-484d-adb7-e9486d2131cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.