PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and Characterization of a Contemporary Type of Metal-Organic Framework and its Application for Purification Wastewater from Toxic Methylene Blue Dye

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the synthesis of a promising material and evaluates the suitability of a metal-organic framework (MOF-199) for purifying toxic methylene blue (MB) dye wastewater via an adsorption process. (MOF-199) is considered much better than traditional adsorbents. The research focused on determining the adsorption characteristics and dye removal effectiveness with MOF-199, where several factors were studied, including dye concentration, contact time, amount of adsorbent, and pH. The highest observed dye removal efficiency was 97.21% when the pH was 7.5, and the reaction duration was 90 minutes. This was achieved by adding 0.2 g of MOF-199 to a dye solution containing 20 mg/L methylene blue. The adsorption process was evaluated by Langmuir, and the Freundlich isotherm models. As the strong correlation factor (R2 = 0.9989) indicates a pseudo-second-order kinetic model describes the adsorption methylene blue by MOF-199 the best. This indicates that the main mechanism of dye removal is chemisorption. Finally, the MOF-199 material can have remarkable reusability as an adsorption material for MB and subsequent efficiency of MOF-199 exhibited a reduction of 14.43% after undergoing four cycles, compared to its initial state. Yet, it remained at a commendably high level.
Rocznik
Strony
37--48
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Lin S., Song Z., Che G., Ren A., Li P., Liu C., Zhang J. 2014. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution. Microporous and Mesoporous Materials, Elsevier Inc. 193, 27–34. https://doi.org/10.1016/j.micromeso.2014.03.004
  • 2. Abdulrahman Hanoon M., Ahmed M.J. 2019. Adsorption of Methyl Orange from Wastewater by using Biochar. Iraqi Journal of Chemical and Petroleum Engineering, 20, 23–9. https://doi.org/10.31699/ijcpe.2019.3.4
  • 3. Chen S., Zhang J., Zhang C., Yue Q., Li Y., Li C. 2010. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination, Elsevier B.V. 252, 149–56. https://doi.org/10.1016/j.desal.2009.10.010
  • 4. Massoudinejad M., Ghaderpoori M., Shahsavani A., Amini M.M. 2016. Adsorption of fluoride over a metal organic framework Uio-66 functionalized with amine groups and optimization with response surface methodology. Journal of Molecular Liquids, Elsevier B.V. 221, 279–86. https://doi.org/10.1016/j.molliq.2016.05.087
  • 5. Ali H.Q., Mohammed A.A. 2021. Removal of Congo Red from Aqueous Solution by Circulating Fluidized Bed(CFB). Association of Arab Universities Journal of Engineering Sciences, 28, 01–7. https://doi.org/10.33261/jaaru.2021.28.2.001
  • 6. M-Ridha M.J., Hussein S.I., Alismaeel Z.T., Atiya M.A., Aziz G.M. 2020. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alexandria Engineering Journal, Faculty of Engineering, Alexandria University. 59, 3551–63. https://doi.org/10.1016/j.aej.2020.06.001
  • 7. Barno S.K.A., Mohamed H.J., Saeed S.M., Al-Ani M.J., Abbas A.S. 2021. Prepared 13X Zeolite as a Promising Adsorbent for the Removal of Brilliant Blue Dye from Wastewater. Iraqi Journal of Chemical and Petroleum Engineering, 22, 1–6. https://doi.org/10.31699/ijcpe.2021.2.1
  • 8. Tsade Kara H., Anshebo S.T., Sabir F.K., Adam Workineh G. 2021. Removal of Methylene Blue Dye from Wastewater Using Periodiated Modified Nanocellulose. International Journal of Chemical Engineering, 2021. https://doi.org/10.1155/2021/9965452
  • 9. Kausar A., Iqbal M., Javed A., Aftab K., Nazli Z. i. H., Bhatti H.N., Nouren S. 2018. Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, Elsevier B.V. 256, 395–407. https://doi.org/10.1016/j.molliq.2018.02.034
  • 10. Kareem H.M., Abd Alrubaye R.T. 2019. Synthesis and Characterization of Metal Organic Frameworks for Gas Storage. IOP Conference Series: Materials Science and Engineering, 518. https://doi.org/10.1088/1757-899X/518/6/062013
  • 11. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. 2013. The chemistry and applications of metal-organic frameworks. Science, 341. https://doi.org/10.1126/science.1230444
  • 12. Alrubaye R.T.A., Kareem H.M. 2019. Carbon Dioxide Adsorption on MOF-199 Metal-Organic Framework at High Pressure. IOP Conference Series: Materials Science and Engineering, 557. https://doi.org/10.1088/1757-899X/557/1/012060
  • 13. Haque E., Jun J.W., Jhung S.H. 2011. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 185, 507–11. https://doi.org/10.1016/j.jhazmat.2010.09.035
  • 14. Akeremale O.K. 2022. Metal-Organic Frameworks (MOFs) as Adsorbents for Purification of Dye-Contaminated Wastewater: A Review. Journal of Chemical Reviews, 4, 1–14. https://doi.org/10.22034/JCR.2022.314728.1130
  • 15. Oladoye P.O., Ajiboye T.O., Omotola E.O., Oyewola O.J. 2022. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, Elsevier B.V. 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678
  • 16. Nashmi O.A., Abdulrazzaq N.N., Mohammed A.A. 2020. Removal of methylene blue from aqueous solution by ozone microbubbles. Association of Arab Universities Journal of Engineering Sciences, 27, 31–40. https://doi.org/10.33261/jaaru.2020.27.3.004
  • 17. Affat S.S. 1991. Classifications, Advantages, Disadvantages, Toxicity Effects of Natural and Synthetic Dyes: A review. University of Thi-Qar Journal of Science, 8, 130–5. http://doi.org/10.32792/utq/utjsci/v8/1/21
  • 18. Al-Yassiry A.A. and Al-Rubaye R.T.A. 2021. A kinetic study of hkust-1 for desulfurization applications. Thermal Science, 25, 1193–202. https://doi.org/10.2298/TSCI190914143A
  • 19. Mahmoodi N.M., Abdi J. 2019. Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchemical Journal, Elsevier B.V. 144, 436–42. https://doi.org/10.1016/j.microc.2018.09.033
  • 20. Jawad N., M. Naife T. 2022. Mathematical Modeling and Kinetics of Removing Metal Ions from Industrial Wastewater. Iraqi Journal of Chemical and Petroleum Engineering, 23, 59–69. https://doi.org/10.31699/ijcpe.2022.4.8
  • 21. Abbas A.S., Ahmed M.J., Darweesh T.M. 2016. Adsorption of Fluoroquinolones Antibiotics on Activated Carbon by K 2 CO 3 with Microwave Assisted Activation. Iraqi Journal of Chemical and Petroleum Engineering, 17, 15–23. https://doi.org/10.31699/IJCPE.2016.2.3
  • 22. Diab K.E., Salama E., Hassan H.S., Abd El-moneim A., Elkady M.F. 2021. Biocompatible MIP-202 Zr-MOF tunable sorbent for cost-effective decontamination of anionic and cationic pollutants from waste solutions. Scientific Reports, Nature Publishing Group UK. 11, 1–13. https://doi.org/10.1038/s41598-021-86140-2
  • 23. Eltaweil A.S., Abd El-Monaem E.M., Omer A.M., Khalifa R.E., Abd El-Latif M.M., El-Subruiti G.M. 2020. Efficient removal of toxic methylene blue (Mb) dye from aqueous solution using a metal- organic framework (mof) mil-101(fe): Isotherms, kinetics, and thermodynamic studies. Desalination and Water Treatment, 189, 395–407. https://doi.org/10.5004/dwt.2020.25599
  • 24. Al Amery N., Abid H.R., Wang S., Liu S. 2020. Removal of methylene blue (MB) by bimetallic- metal organic framework. Journal of Applied Materials and Technology, 2, 36–49. https://doi.org/10.31258/jamt.2.1.36-49
  • 25. Thi T.V.N., Luu C.L., Hoang T.C., Nguyen T., Bui T.H., Nguyen P.H.D., Thi T.P.P. 2013. Synthesis of MOF-199 and application to CO2 adsorption. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 1–7. https://doi.org/10.1088/2043-6262/4/3/035016
  • 26. Mohammadnejad M., Hajiashrafi T., Rashnavadi R. 2018. An erbium–organic framework as an adsorbent for the fast and selective adsorption of methylene blue from aqueous solutions. Journal of Porous Materials, Springer US. 25, 761–9. https://doi.org/10.1007/s10934-017-0489-8
  • 27. Arora C., Soni S., Sahu S., Mittal J., Kumar P. Bajpai P.K. 2019. Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids, Elsevier B.V. 284, 343–52. https://doi.org/10.1016/j.molliq.2019.04.012
  • 28. Jabbar M.S. and Alrubaye R.T.A. 2022. Metal Organic Frameworks as Gas Storage for Liquefied Petroleum Gas Vehicle in Iraq. AIP Conference Proceedings, 2660, 25–34. https://doi.org/10.1063/5.0108325
  • 29. Saghian M., Dehghanpour S. and Sharbatdaran M. 2020. Unique and efficient adsorbents for highly selective and reverse adsorption and separation of dyes: Via the introduction of SO3H functional groups into a metal-organic framework. RSC Advances, Royal Society of Chemistry. 10, 9369–77. https://doi.org/10.1039/c9ra10840h
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f47db0ef-f36d-41ad-84be-e4da27ecf7ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.