Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A thorough spatiotemporal analysis of the intense seismic activity that took place near the Aegean coast of NW Turkey during January–March 2017 was conducted, aiming to identify its causative relation to the regional seismotectonic properties. In this respect, absolute and relative locations are paired and a catalog consisting of 2485 events was compiled. Relative locations are determined with high accuracy using the double-difference technique and differential times both from phase pick data and from cross-correlation measurements. The spatial distribution of the relocated events revealed a south-dipping causative fault along with secondary and smaller antithetic segments. Spatially, the seismicity started at the westernmost part and migrated with time to the easternmost part of the activated area. Temporally, two distinctive periods are observed, namely an early period lasting 1 month and a second period which includes the largest events in the sequence. The investigation of the interevent time distribution revealed a triggering mechanism, whereas the ETAS parameters show a strong external force (l[1), which might be attributed to the existence of the Tuzla geothermal field.
Wydawca
Czasopismo
Rocznik
Tom
Strony
479--495
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
- Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
- Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
- Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
autor
- Geophysics Department, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Bibliografia
- 1. Chouliaras G, Kassaras I, Kapetanidis V, Petrou P, Drakatos G (2015) Seismotectonic analysis of the 2013 seismic sequence at the western Corinth Rift. J Geodyn 90:42–57. https://doi.org/10.1016/j.jog.2015.07.001
- 2. Corral A (2006) Dependence of earthquake recurrence times and independence of magnitudes on seismicity history. Tectonophysics 424:177–193. https://doi.org/10.1016/j.tecto.2006.03.035
- 3. Demir MM, Baba A, Atilla V, Inanli M (2014) Types of the scaling in hyper saline geothermal system in northwest Turkey. Geothermics 50:1–9. https://doi.org/10.1016/j.geothermics.2013.08.003
- 4. Duverger C, Godano M, Bernard P, Lyon-Caen H, Lambotte S (2015) The 2003–2004 seismic swarm in the western Corinth rift: evidence for a multiscale pore pressure diffusion process along a permeable fault system. Geophys Res Lett 42:7374–7382. https://doi.org/10.1002/2015GL065298.1
- 5. Evison FF (1977) The precursory earthquake swarm. Phys Earth Planet Inter 15:19–23
- 6. Evison F, Rhoades D (2000) The precursory earthquake swarm in Greece. Ann Geofis 43:991–1009
- 7. Farrell J, Husen S, Smith RB (2009) Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J Volcanol Geotherm Res 188:260–276. https://doi.org/10.1016/j.jvolgeores.2009.08.008
- 8. Fischer T, Horálek J, Hrubcová P, Vavrycuk V, Brauer K, Kampf H (2014) Intra-continental earthquake swarms in West-Bohemia and Vogtland: a review. Tectonophysics 611:1–27. https://doi.org/10.1016/j.tecto.2013.11.001
- 9. Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res 110:1–10. https://doi.org/10.1029/2004JB003247
- 10. Kapetanidis V, Deschamps A, Papadimitriou P, Matrullo E, Karakonstantis A, Bozionelos G, Kaviris G, Serpetsidaki A, Lyon-Caen H, Voulgaris N, Bernard P, Sokos E, Makropoulos K (2015) The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophys J Int 202:2044–2073. https://doi.org/10.1093/gji/ggv249
- 11. Karakostas VG, Papadimitriou EE, Karakaisis GF, Papazachos CB, Scordilis EM, Vargemezis G, Aidona E (2003) The 2001 Skyros, Northern Aegean, Greece, earthquake sequence: off-fault aftershocks, tectonic implications, and seismicity triggering. Geophys Res Lett 30:10–13. https://doi.org/10.1029/2002GL015814
- 12. Karakostas VG, Papadimitriou EE, Tranos MD, Papazachos CB (2010) Active seismotectonic structures in the area of Chios island, North Aegean Sea, revealed from microseismicity and fault plane solutions. Bull Geol Soc Greece XLII:2064–2074
- 13. Karakostas V, Karagianni E, Paradisopoulou P (2012) Space-time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf. Nat Hazards 63:1181–1202
- 14. Karakostas V, Papadimitriou E, Gospodinov D (2014) Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities. Geophys J Int 197:525–541
- 15. Kiratzi A, Sokos E, Ganas A, Tselentis A, Benetatos C, Roumelioti Z, Serpetsidaki A, Andriopoulos G, Galanis O, Petrou P (2008) The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece. Tectonophysics 452:51–65. https://doi.org/10.1016/j.tecto.2008.02.009
- 16. Klein FW (2000) User’s guide to HYPOINVERSE-2000, a Fortran program to solve earthquake locations and magnitudes, Open File Rep. 02–171, Ver. 1.0, U.S. Geological Survey, Menlo Park, USA
- 17. Kyriakopoulos C, Chini M, Bignami C, Stramondo S, Ganas A, Kolligri M, Moschou A (2013) Monthly migration of a tectonic seismic swarm detected by DInSAR: southwest Peloponnese, Greece. Geophys J Int 194:1302–1309. https://doi.org/10.1093/gji/ggt196
- 18. Lombardi AM (2015) Estimation of the parameters of ETAS models by simulated annealing. Sci Rep 5:8417. https://doi.org/10.1038/srep08417
- 19. Lombardi AM (2017) SEDA: a software package for the statistical earthquake data analysis. Sci Rep 7:44171. https://doi.org/10.1038/srep44171
- 20. Mesimeri M, Papadimitriou E, Karakostas V, Tsaklidis G (2013) Earthquake clusters in NW Peloponnese. Bull Geol Soc Greece, XLVII, pp 1167–1176
- 21. Mesimeri M, Karakostas V, Papadimitriou E, Schaff D, Tsaklidis G (2016) Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). J Seismol 20:595–614. https://doi.org/10.1007/s10950-015-9546-4
- 22. Mesimeri M, Karakostas V, Papadimitriou E, Tsaklidis G, Tsapanos T (2017) Detailed microseismicity study in the area of Florina (Greece): evidence for fluid driven seismicity. Tectonophysics 694:424–435. https://doi.org/10.1016/j.tecto.2016.11.027
- 23. Mogi K (1963) Some discussions on Aftershocks, Foreshocks and Earthquake Swarms- the Fracture of a Semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull Earthq Res Inst 41:615–658
- 24. Ogata Y (1992) Detection of precursory relative quiescence before great earthquakes through a statistical model. J Geophys Res 97:19845. https://doi.org/10.1029/92JB00708
- 25. Ogata Y (1998) Space-time point process models for earthquakes occurrences. Ann Inst Stat Math 50:379–402
- 26. Pacchiani F, Lyon-Caen H (2010) Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophys J Int 180:59–72. https://doi.org/10.1111/j.1365-246X.2009.04409.x
- 27. Panagiotopoulos DG, Papazachos BC (1985) Travel times of Pn-waves in the Aegean and surrounding area. Geophys J R Astron Soc 80:165–176
- 28. Papadimitriou E, Gospodinov D, Karakostas V, Astiopoulos A (2013) Evolution of the vigorous 2006 swarm in Zakynthos (Greece) and probabilities for strong aftershocks occurrence. J Seismol 17:735–752. https://doi.org/10.1007/s10950-012-9350-3
- 29. Schaff DP, Waldhauser F (2005) Waveform cross-correlation-based differential travel-time measurements at the northern California seismic network. Bull Seismol Soc Am 95:2446–2461
- 30. Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73:1417. https://doi.org/10.1029/JB073i004p01417
- 31. Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge, p 496
- 32. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542. https://doi.org/10.1038/nature04094
- 33. Shapiro SA (2015) Fluid-induced seismicity. Cambridge University Press, Cambridge, p 298
- 34. Shelly DR, Hill DP, Massin F, Farell J, Smith RB, Taira T (2013) A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. J Geophys Res E Planets 118:4872–4886. https://doi.org/10.1002/jgrb.50362
- 35. Sornette D, Helmstetter A (2002) Occurrence of finite-time-singularities in epidemic models of rupture, earthquakes and starquakes. Phys Rev Lett 89:1–4. https://doi.org/10.1103/PhysRevLett.89.158501
- 36. Sornette D, Werner MJ (2005) Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed aftershock sequences. J Geophys Res 110:1–11. https://doi.org/10.1029/2004JB003535
- 37. Sykes L (1970) Earthquake swarms and sea floor spreading. J Geophys Res 75:6598–6611
- 38. Urbancic TI, Trifu CI, Long JM, Young RP (1992) Space-time correlations of b values with stress release. Pure appl Geophys 139:449–462. https://doi.org/10.1007/BF00879946
- 39. Waldhauser F, Ellsworth WL (2000) A Double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull Seismol Soc Am 90:1353–1368. https://doi.org/10.1785/0120000006
- 40. Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans Am Geopys Union 79:579
- 41. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869. https://doi.org/10.1785/0119990114
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f47a82aa-8984-44bb-911b-2053b63c4c49