Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Automatic recognition of the signal modulation type turned out to be useful in many areas, including electronic warfare or surveillance. The wavelet transform is an effective way to extract signal features for identification purposes. In this paper there are M-ary ASK, M-ary PSK, M-ary FSK, M-ary QAM, OOK and MSK signals analysed. The mean value, variance and central moments up to five of continuous wavelet transform (CWT) are used as signal features. The principal component analysis (PCA) is applied to reduce a number of features. A multi-layer neural network trained with backpropagation learning algorithm is considered as a classifier. There are two research variants: interclass and intraclass recognition with a wide range of signal-to-noise ratio (SNR).
Rocznik
Tom
Strony
257--261
Opis fizyczny
Bibliogr. 19 poz., wykr., tab.
Twórcy
autor
- Institute of Radioelectronics, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00-980 Warsaw, Poland
autor
- Institute of Radioelectronics, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00-980 Warsaw, Poland
Bibliografia
- [1] D. Zeng, X. Zeng, G. Lu, and B. Tang, “Automatic modulation classification of radar signals using the generalised time-frequency representation of Zhao, Atlas and Marks”, IET Radar Sonar Navig. 5 (4), 507-516 (2011), doi: 10.1049/ietrsn.2010.0174.
- [2] D. Zeng, X. Zeng, H. Cheng, and B. Tang, “Automatic modulation classification of radar signals using the Rihaczek distribution and Hough transform”, IEEE IET Radar Sonar Navig. 6 (5), 322-331 (2012), doi: 10.1049/iet-rsn.2011.0338.
- [3] C. Lesnik and A. Kawalec, “Modification of a weighting function for NLFM radar signal designing”, Act. Phys. Pol. A 114 (6-A), A-143-A-1479 (2008).
- [4] C. Lesnik, P. Serafin, and A. Kawalec, “Azimuth ambiguity suppression in SAR images using Doppler-sensitive signals”, Bull. Pol. Ac.: Tech. 63 (1), 221-227 (2015).
- [5] C. Lesnik, P. Serafin, and H. Milczarek, “Experimental verification of the range-Doppler algorithm in a continuous wave SAR system”, Prz. Elektrotech. R. 91 (3), (2015).
- [6] L. H¨aring, Y. Chen, and A. Czylwik, “Automatic modulation classification methods for wireless OFDM systems in TDD mode”, IEEE Trans. on Communications 58 (9), 2480-2485 (2010), doi: 10.1109/TCOMM.2010.080310.090228.
- [7] P. Shih and D. Chang, “An automatic modulation classification technique using high-order statistics for multipath fading channels”, Workshop on Transceiver Design for ITS 1, 691-695 (2011), doi: 10.1109/ITST.2011.6060143.
- [8] J.J. Popoola and R. van Olst, Automatic Classification of Combined Analog and Digital Modulation Schemes Using Feedforward Neural Network, pp. 1-6, AFRICON, London, 2011, doi: 10.1109/AFRCON.2011.6072008.
- [9] K. Hassan, I. Dayoub, W. Hamouda, and M. Berbineau, “Automatic modulation recognition using wavelet transform and neural networks in wireless systems”, EURASIP J. on Advances in Signal Processing 58, 353-362 (2010), doi: 10.1155/2010/532898.
- [10] T. Chen, W. Jin, and Z. Chen, “Feature extraction using wavelet transform for radar emitter signals”, Int. Conf. Communications and Mobile Computing, IEEE 1, 414-418 (2009), doi:10.1109/CMC.2009.202.
- [11] K. Maliatsos, S. Vassaki, and P. Constantinou, “Interclass and intraclass modulation recognition using the wavelet transform”, 18th Annual IEEE Symp. PIMRC 1, 1-5 (2007), doi: 10.1109/PIMRC.2007.4394540.
- [12] K.C. Ho, W. Prokopiw, and Y. Chan, “Modulation identification of digital signals by the wavelet transform”, IEE Proc.- Radar, Sonar Navig. 147 (4), 169-176 (2000), doi: 10.1049/iprsn: 20000492.
- [13] H. Bing, L.Gang, G. Cun, and G. Jiang, “Modulation recognition of communication signal based on wavelet RBF neural network”, 2nd Int. Conf. Computer Engeneering and Technology 2, V2-490-V2-492, (2010), doi: 10.1109/ICCET.2010.5485567.
- [14] K.C. Ho, W. Prokopiw, and Y. Chan, Modulation Identification by the Wavelet Transform, pp. 886-890, Milcom, London, 1995, doi: 10.1109/MILCOM.1995.483654.
- [15] L. Hong and K.C. Ho, “Identification of digital modulation types using the wavelet transform”, Military Communications Conf. Proc. 1, 427-431 (1999), doi: 10.1109/MILCOM.1999.822719.
- [16] M. Walenczykowska and A. Kawalec, “Modulation type recognition based on wavelet transform and neural network”, Electronics - Constructions, Technologies, Behaviours 53, 120-123 (2012), (in Polish).
- [17] M. Walenczykowska and A. Kawalec, “Analysis of automatic modulation recognition algorithm for Cognitive Radio (CR) and radio intelligence (SIGINT)”, Electronics - Constructions, Technologies, Behaviours 56, 36-39 (2015), DOI:10.15199/13.2015.4.7.
- [18] P.S. Addison, The Illustrated Wavelet Handbook, Introuctory Theory and Applications in Science, Engeneering, Medicine and Finance, Taylor and Francis Group, London, 2002.
- [19] C. Torrence and G.P. Compo, “A practical guide to wavelet analysis”, Bull. Am. Meteorological Society 79 (1), http://paos.colorado.edu/research/wavelets/ (1998).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4774cb2-f150-442f-98b7-09dd9960d66f