PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting performance and onset criteria of a three-stage double-acting thermoacoustic Stirling oscillator: Analysis and experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel analytical approach is proposed to predict the performance and onset criteria of a three-stage double-acting thermoacoustic Stirling oscillator (TDTASO). First, a coupled dynamic-thermodynamic model justifying the behavior of TDTASO is presented, taking into account Schmidt’s theory assumptions. Subsequently, the manipulation of the obtained governing equations reveals that the considered Stirling oscillator is a physical regulator system. Thus, the onset criteria, which are the necessary conditions for designing such oscillators, are assessed based on a new analytical method resulting from a regulator-like model. Accordingly, the onset temperature difference is predicted corresponding to different dimensions of the resonator section in the TDTASO. Next, the sensitivity of the TDTASO to the inconsistency of resonators’ dimensions is investigated. The results show that increasing the length of the mismatched water column results in a higher frequency. Finally, a prototype TDTASO is constructed and experimentally evaluated. Accordingly, the oscillator frequency is measured 3.14 Hz corresponding to the onset temperature of 163◦C and the resonator length of 0.52 m. The experimental data demonstrate the effectiveness of the proposed analytical scheme in predicting the necessary conditions for designing the TDTASO.
Rocznik
Strony
497--523
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
  • Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
  • Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
Bibliografia
  • [1] S. Zare and A. Tavakolpour-Saleh. Free piston Stirling engines: A review. International Journal of Energy Research, 44(7):5039–5070, 2020. doi: 10.1002/er.4533.
  • [2] S. Zare, A. Tavakolpour-Saleh, and M. Sangdani. Investigating limit cycle in a free piston Stirling engine using describing function technique and genetic algorithm. Energy Conversion and Management, 210:112706, 2020. doi: 10.1016/j.enconman.2020.112706.
  • [3] G. Walker and J.R. Senft. Free-Piston Stirling Engines. Springer, 1985. doi: 10.1007/978-3- 642-82526-2_2.
  • [4] S. Zare and A. Tavakolpour-Saleh. Applying particle swarm optimization to study the effectof dominant poles places on performance of a free piston Stirling engine. Arabian Journal for Science and Engineering, 44(6):5657–5669, 2019. doi: 10.1007/s13369-018-3677-1.
  • [5] S. Zare and A. Tavakolpour-Saleh. Modeling, construction, and testing of a diaphragm ther moacoustic Stirling engine. Energy Conversion and Management, 243:114394, 2021. doi:10.1016/j.enconman.2021.114394.
  • [6] P. Murti, A. Tkizawa, E. Shoji, and T. Biwa. Design guideline for multi-cylinder-type liquid- piston Stirling engine. Applied Thermal Engineering, 200:117635, 2022. doi: 10.1016/j.appl thermaleng.2021.117635.
  • [7] S. Backhaus and G.W. Swift. A thermoacoustic-Stirling heat engine: Detailed study. The Journal of the Acoustical Society of America, 107(6):3148–3166, 2000. doi: 10.1121/1.429343.
  • [8] S. Backhaus and G.W. Swift. A thermoacoustic Stirling heat engine. Nature, 399(6734):335– 338, 1999. doi: 10.1038/20624.
  • [9] C. Iniesta, J.L. Olazagoitia, J. Vinolas, and J. Aranceta. Review of travelling-wave thermoacoutic electric-generator technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(7):940–957, 2018. doi: 10.1177/0957650918760627.
  • [10] T.W. Steiner, et al. High-efficiency natural gas fired 1 kWe thermoacoustic engine. Applied Thermal Engineering, 199:117548, 2021. doi: 10.1016/j.applthermaleng.2021.117548.
  • [11] E. Luo, H. Ling, W. Dai, and Y. Zhang. A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator. Chinese Science Bulletin, 50(3):284–286, 2005. doi: 10.1007/BF02897541.
  • [12] S. Zhang, L. Zhang, and E. Luo. Influence of asymmetric structure on performance of double-acting traveling-wave thermoacoustic engine with liquid piston. Cryogenics, 185:25–32, 2012. (in Chinese).
  • [13] D.H. Li, L.M. Zhang, Z.H. Wu, and E. Luo. Numerical simulation and experimental investigation of a gas-liquid, double-acting traveling-wave thermoacoustic heat engine. International Journal of Energy Research, 37(15):1963–1970, 2013. doi: 10.1002/er.3060.
  • [14] K. Wang, S.R. Sanders, S. Dubey, F.H. Choo, and F. Duan. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renewable and Sustainable Energy Reviews, 62:89–108, 2016. doi: 10.1016/j.rser.2016.04.031.
  • [15] S. Zhang and E. Luo. The thermodynamic performance of a double-acting traveling-wave thermoacoustic engine with liquid-water piston. International Journal of Green Energy, 12(3):198–206, 2015. doi: 10.1080/15435075.2014.891522.
  • [16] D. Li, Y. Chen, E. Luo, and Z. Wu. Study of a liquid-piston traveling-wave thermoacoustic heat engine with different working gases. Energy, 74:158–163, 2014. doi: 10.1016/j.energy.2014.05.034.
  • [17] S. Tamura, H. Hyodo, and T. Biwa. Experimental and numerical analysis of a liquid-piston Stirling engine with multiple unit sections. Japanese Journal of Applied Physics, 58(1):017001, 2018. doi: 10.7567/1347-4065/aae930.
  • [18] H. Hyodo, S. Tamura, and T. Biwa. A looped-tube traveling-wave engine with liquid pistons. Journal of Applied Physics, 122(11):114902, 2017. doi: 10.1063/1.4986409.
  • [19] P. Murti, H. Hyodo, and T. Biwa. Suppression of liquid surface instability induced by finite-amplitude oscillation in liquid piston Stirling engine. Journal of Applied Physics, 127(15):154901, 2020. doi: 10.1063/5.0003921.
  • [20] Z. Wu, G. Yu, L. Zhang, W. Dei, ans E. Luo. Development of a 3 kW double-acting thermoa- coustic Stirling electric generator. Applied Energy, 136:866–872, 2014. doi: 10.1016/j.apenergy. 2014.04.105.
  • [21] S. Rulik, W. Wróblewski, and K. Rusin. A numerical study of the relation between the acous- tic generator geometry and the heat transfer conditions. Archive of Mechanical Engineering, 65(1):5–26, 2018. doi: 10.24425/119407.
  • [22] T. Bi, Z. Wu, L. Zhang, G. Yu, E. Luo, and W. Dei. Development of a 5 kW traveling-wave thermoacoustic electric generator. Applied Energy, 185:1355–1361, 2017. doi: 10.1016/ j.ap energy.2015.12.034.
  • [23] S. Zare, A. Tavakolpour-Saleh, and A. Omidvar. From Beale number to pole placement design of a free piston Stirling engine. Archive of Mechanical Engineering, 64(4):499–518, 2017. doi: 10.1515/meceng-2017-0029.
  • [24] H. Bruus. Theoretical Microfluidics. Oxford University Press, Oxford, 2008.
  • [25] H.-S. Yang/ Numerical model for predicting the performance and transient behavior of a gamma-type free piston Stirling engine. Applied Thermal Engineering, 185:116375, 2021. doi: 10.1016/j.applthermaleng.2020.116375.
  • [26] H. Joorabli,G.B. Gharehpetian, S. Ghassem-Zadeh, and V. Ghods. A new control method for distortions compensation and power control using microgrid connecting voltage source converters. Sustainable Energy Technologies and Assessments, 47:101373, 2021. doi: 10.1016/j.seta.2021.101373.
  • [27] A. Tavakolpour-Saleh and S. Zare. Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model. Energy, 227:120466, 2021. doi: 10.1016/j.energy. 2021.120466.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4753fd0-7076-4244-a5f9-d61ed1357e87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.