PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How can the grasslands under rainfall events modify water balance in drought conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
W jaki sposób użytki zielone w okresie opadów mogą modyfikować bilans wodny w warunkach suszy
Języki publikacji
EN
Abstrakty
EN
Taking into account the well-established influence of hillslopes grasslands on runoff processes, the purpose of this study was to investigate how grasslands can affect the water flow pathways on hillslopes, in drought conditions. This study was performed in experimental grassland at plot-scale (e.g., Festuca pratensis), in temperate humid continental climatic conditions of Curvature Subcarpathians, Romania. The rainfall, evapotranspiration, and soil moisture daily data, respectively 208 rainfall and 16 rainfall-runoff events data measured in grassland hills during the growing season (1 April up to 30 September 2015 and 2016) were used. Our results suggest that a runoff event response in extreme drought conditions occurs on grasslands only if precipitation exceeds the threshold of 31 mm Hortonian overland flow (HOF), while this threshold drops to 17 mm during moderate droughts and up to 8 mm for wet conditions. The rainfall events up to 16 mm proved to be insufficient to completely saturate the soil. Therefore, HOF has only a minor contribution in drought conditions, on grassland and light on bare soil. A complementary and negative effect of grasslands in drought conditions is the water resources suppressing on hillslopes.
PL
Biorąc pod uwagę dobrze znany wpływ użytków zielonych na stokach na odpływ wody, celem było zbadanie, jak te siedliska mogą wpływać na drogi przepływu wody w warunkach suszy. Badania prowadzono na eksperymentalnych poletkach porośniętych na przykład przez Festuca pratensis w warunkach umiarkowanie wilgotnego klimatu kontynentalnego na Pogórzu Karpackim w Rumunii. Do analizy użyto dane o opadach, ewapotranspiracji i wilgotności gleby (208 danych o opadach i 16 kombinacji opad–odpływ) pozyskanych z pomiarów na pagórkach pokrytych roślinnością trawiastą w sezonie wegetacyjnym od 1 kwietnia do 30 września w latach 2015 i 2016. Uzyskane wyniki wskazują, że odpływ w warunkach skrajnej suszy występuje w siedliskach trawiastych jedynie wtedy, gdy opad przekroczy wartość 31 mm powierzchniowego odpływu Hortona (HOF). Wartość HOF maleje do 17 mm w warunkach umiarkowanej suszy i do 8 mm w warunkach wilgotnych. Okresy opadów do 16 mm okazały się niewystarczające do całkowitego nasycenia gleby. Z tego powodu przepływ powierzchniowy ma w warunkach suszy znikome znaczenie w siedliskach trawiastych i niewielkie na odkrytej glebie. Komplementarnym i ujemnym skutkiem występowania użytków zielonych jest ograniczenie zasobów wodnych na stokach.
Wydawca
Rocznik
Tom
Strony
53--65
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Research Institute of the University of Bucharest, University of Bucharest, 36-46 Bd. M. Kogălniceanu, Sector 5, 050107, Bucharest, Romania
  • National Institute of Hydrology and Water Management, Bucharest, Romania
autor
  • National Institute of Hydrology and Water Management, Bucharest, Romania
autor
  • National Institute of Hydrology and Water Management, Bucharest, Romania
  • University of Bucharest, Faculty of Geography, Bucharest, Romania
autor
  • National Institute of Hydrology and Water Management, Bucharest, Romania
Bibliografia
  • ABRANTES J.R.C.B., DE LIMA J.L.M.P., PRATS S.A., KEIZER J.J. 2017. Assessing soil water repellency spatial variability using a thermographic technique: An exploratory study using a small-scale laboratory soil flume. Geoderma. Vol. 287 p. 98–104.
  • BĄK B., KUBIAK-WÓJCICKA K. 2017. Impact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015. Journal of Water and Land Development. No. 32 p. 3–12. DOI 10.1515/jwld-2017-0001.
  • BLIDARU S. 1965. Emploi des bassins représentatifs et des stations expérimentales a l'étude des phénomènes hydrologiques. In: Bassins représentatifs et expérimentaux [Characteristic basins and experimental stations used in the determination of hydrological phenomena. In: Representative and experimental areas]. Symposium of Budapest. Vol. 2. Publ. No. 66 p. 107–115.
  • BLÖSCHL G., SIVAPALAN M. 1995. Scale issues in hydrological modelling: a review. Hydrological Processes. Vol. 9. Iss. 3–4 p. 251–290.
  • BROCCA L., MELONE F., MORAMARCO T. 2008. Soil moisture monitoring at different scales for rainfall-runoff modelling [online]. International Congress on Environmental Modelling and Software. No. 63 p. 407–414. [Access 31.08.2017]. Available at: http://scholarsarchive.byu.edu/iemssconference/2008/all/63
  • CERDA A., RODRIGO-COMINO J., NOVARA A., BREVIK E.C., VAEZ A.R., PULIDO M., GIMÉNEZ-MORERA A., KEESSTRA S.D. 2018. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography. Vol. 42. Iss. 2 p. 202–219. DOI 10.1177/0309133318758521.
  • DAI A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change. Vol. 3. Iss. 1 p. 52–58.
  • DE LIMA J.L.M.P., SINGH V.P. 2002. The influence of the pattern of moving rainstorms on overland flow. Advances in Water Resources. Vol. 25 p. 817–828.
  • Delta-T 2016. User manual for the profile probe type PR2. PR2-UM-5.0. Cambridge. Delta-T Devices Ltd. pp. 48.
  • DUAN J., YANG J., TANG C., CHEN L., LIU Y., WANG L. 2017. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China. PloS One. Vol. 12. Iss. 8 e0182706.
  • FULLEN M.A. 1992. Erosion rates on bare loamy sand soils in east Shropshire, UK. Soil Use and Management. Vol. 8. Iss. 4 p. 157–162.
  • FULLEN M.A. 1998. Effects of grass ley set-aside on runoff, erosion and organic matter levels in sandy soils in east Shropshire, UK. Soil and Tillage Research. Vol. 46. Iss. 1–2 p. 41–49.
  • GHOLAMI L., BANASIK K., SADEGHI S.H., KHALEDI DARVISHAN A., HEJDUK L. 2014. Effectiveness of straw mulch on infiltration, splash erosion, runoff and sediment in laboratory conditions. Journal of Water and Land Development. No. 22 p. 51–60.
  • HOLKO L., LEPISTÖ A. 1997. Modelling the hydrological behaviour of a mountain catchment using TOPMODEL. Journal of Hydrology. Vol. 196. Iss. 1 p. 361–377.
  • HORTON R.E. 1919. Rainfall interception. Monthly Weather Review. Vol. 47. Iss. 9 p. 603–623.
  • HOTTENSTEIN J. D., PONCE-CAMPOS G. E., MOGUEL-YANES J., MORAN M.S. 2015. Impact of varying storm intensity and consecutive dry days on grassland soil moisture. Journal of Hydrometeorology. Vol. 16. Iss. 1 p. 106–117.
  • IONIŢĂ I., RĂDOANE M., MIRCEA S. 2006. Romania. In: Soil erosion in Europe. Eds. J. Boardman, J. Poesen. John Wiley & Sons, Ltd. p. 155–166.
  • JANKOWSKA-HUFLEJT H. 2006. The function of permanent grasslands in water resources protection. Journal of Water and Land Development. No. 10 p. 55–65.
  • JOYCE C. B., SIMPSON M., CASANOVA M. 2016. Future wet grasslands: ecological implications of climate change. Ecosystem Health and Sustainability Vol. 2. Iss. 9: e01240. DOI 10.1002/ehs2.1240.
  • KHEZAZNA A., AMARCHI H., DERDOUS O., BOUSAKHRIA F. 2017. Drought monitoring in the Seybouse basin (Algeria) over the last decades. Journal of Water and Land Development. No. 33 p. 79–88. DOI 10.1515/jwld2017-0022.
  • LATRON J., ANDERTON S., WHITE S., LLORENS P., GALLART F. 2003. Seasonal characteristics of the hydrological response in a Mediterranean mountain research catchment (Vallcebre, Catalan Pyrenees): Field investigations and modelling. International Association of Hydrological Sciences Publication. No. 278 p. 106–110.
  • MACLEOD C.J.A, HUMPHREYS M.W., WHALLEY W.R., TURNER L, BINLEY A, WATTS C.W., SKØT L., JOYNES A., HAWKINS S., KING I.P., O'DONOVAN S., HAYGARTH P.M. 2013. A novel grass hybrid to reduce flood generation in temperate regions. Scientific Report. No. 3. Art. No. 1683.
  • MACLEOD C.J.A., BINLEY A., HAWKINS S. L., HUMPHREYS M. W., TURNER L.B., WHALLEY W. R., HAYGARTH P. M. 2007. Genetically modified hydrographs: what can grass genetics do for temperate catchment hydrology? Hydrological Processes. Vol. 21. Iss. 16 p. 2217–2221.
  • MAETENS W., VANMAERCKE M., POESEN J., JANKAUSKAS B., JANKAUSKIENE G., IONIŢĂ I. 2012. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Progress in Physical Geography. Vol. 36. Iss. 5 p. 599–653.
  • MAFTEI C., CHEVALLIER P., CIUREA C., ROŞU L. 2002. Considerations concerning the characteristics of permeability of the podzolic soil in Voinesti catchment. “Ovidius” University Annals Constantza. Series Civil Engineering. Vol. 1. Iss. 3/4 p. 525–530.
  • MARZEN M., ISERLOH T., CASPER M.C., RIES J.B. 2015. Quantification of particle detachment by rain splash and wind-driven rain splash. Catena. Vol. 127 p. 135–141.
  • MINEA G., ADLER M. J., MOROŞANU G., NECULAU G. 2015. The relationship between flow rates and land use at plot scale in the Voineşti Experimental Basin (Romania). Scientific Papers. Ser. E. Land Reclamation, Earth Observation and Surveying, Environmental Engineering. Vol. 4 p. 88–94.
  • MINEA G., ILIESCU M., DEDU F. 2016. Temporal rainfall properties at events scale in the Curvature Subcarpathians (Romania). In: Forum Geographic. Eds.G. Minea, G. Neculau, J.L.M.P. de Lima. Vol. 15. Suppl. 2 p. 115–123.
  • MINEA G., MOROŞANU G.A. 2016. Micro-scale hydrological field experiments in Romania. Open Geosciences. Vol. 8. Iss. 1 p. 154–160.
  • MIRCEA S., PETRESCU N., TRONAC A. 2015. Some aspects concerning gully erosion process in small torrential watersheds and its impact on environment. Carpathian Journal of Earth and Environmental Sciences. Vol. 10. Iss. 2 p. 115–122.
  • MIȚĂ P., MĂTREAŢĂ. S. 2016. Representative basins in Romania: Synthesis of research result. Bucharest. Didactica Publishing House. ISBN 9786063102967 pp. 36.
  • OriginLab Corp. 2016. Origin Pro 2016. Version b9.3.2.303. Northampton, MA, U.S.A.
  • OUDA S.A., NORELDIN T., MOUNZER O.H., ABDELHAMID M.T. 2015. CropSyst model for wheat irrigation water management with fresh and poor quality water. Journal of Water and Land Development. No. 27 p. 41–50. DOI 10.1515/jwld-2015-0023.
  • PEEL M.C., FINLAYSON B. L., MCMAHON T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions. Vol. 4. Iss. 2 p. 439–473.
  • RODRÍGUEZ-BLANCO M.L., TABOADA-CASTRO M.M., TABOADA-CASTRO M.T. 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (Northwest Spain). Hydrological Sciences Journal. Vol. 57. Iss. 3 p. 445–459.
  • SCHERRER S., NAEF F., FAEH A. O., CORDERY I. 2007. Formation of runoff at the hillslope scale during intense precipitation. Hydrology and Earth System Sciences Discussions. Vol. 11. Iss. 2 p. 907–922.
  • SCHMOCKER-FACKEL, P., NAEF, F., SCHERRER, S. 2007. Identifying runoff processes on the plot and catchment scale. Hydrol. Earth Syst. Sci. Discuss., Iss. 3 p. 2063–2100.
  • SPEI 2017. Global drought monitor [online]. The Global SPEI. [Access 30.09.2017]. Available at: http://spei.csic.es/map
  • STAN F., NECULAU G., ZAHARIA L., IOANA-TOROIMAC G. 2014. Evapotranspiration variability of different plant types at Romanian experimental evapometric measurement stations. Climatologie. Vol. 11 p. 85–90.
  • STANCIU P., ZLATE-PODANI I. 1987. A study of hydrological regimes in experimental basins in relation to cultivation practices. In: Water for the future: Hydrology in perspective. Eds. J.C. Rodda, N.C. Matalas. IAHS Publication. No. 164 p. 193–203.
  • VAN LOON A.F. 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews: Water. Vol. 2. Iss. 4 p. 359–392.
  • VICENTE-SERRANO S.M., BEGUERÍA S., LÓPEZ-MORENO J.I. 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate. Vol. 23. Iss. 7 p. 1696–1718.
  • VICENTE-SERRANO S.M., LÓPEZ-MORENO J.I., BEGUERÍA S., LORENZO-LACRUZ J., AZORIN-MOLINA C., MORÁN-TEJEDA E. 2011. Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering. Vol. 17(2) p. 318–332.
  • WARWADE P., TIWARI S., RANJAN S., CHANDNIHA S.K., ADAMOWSKI J. 2018. Spatio-temporal variation of rainfall over Bihar State, India. Journal of Water and Land Development. No. 36 p. 183–197. DOI 10.2478/jwld2018-0018.
  • ZAHARIA L., IOANA-TOROIMAC G. 2009. Erosion dynamics – precipitation relationship in the Carpathian’s Curvature Region (Romania). Geografia Fisica e Dinamica Quaternaria. Vol. 32 p. 95–102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f472fce3-144f-4b42-a6d2-3c0f7c2389e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.