PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Inverse and forward surrogate models for expedited design optimization of unequal-power-split patch couplers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, a procedure for precise and expedited design optimization of unequal power split patch couplers is proposed. Our methodology aims at identifying the coupler dimensions that correspond to the circuit operating at the requested frequency and featuring a required power split. At the same time, the design process is supposed to be computationally efficient. The proposed methodology involves two types of auxiliary models (surrogates): an inverse one, constructed from a set of reference designs optimized for particular power split values, and a forward one which represents the circuit S-parameter gradients as a function of the power split ratio. The inverse model directly yields the values of geometry parameters of the coupler for any required power split, whereas the forward model is used for a post-scaling correction of the circuit characteristics. For the sake of illustration, a 10-GHz circular sector patch coupler is considered. The power split ratio of the structure is re-designed within a wide range of -6 dB to 0 dB. As demonstrated, precise scaling (with the power split error smaller than 0.02 dB and the operating frequency error not exceeding 0.05 GHz) can be achieved at the cost of less than three full-wave EM simulations of the coupler. Numerical results are validated experimentally.
Rocznik
Strony
463--473
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
  • Reykjavik University, School of Science and Engineering, 101 Reykjavik, Iceland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Zheng, S.Y., Yeung, S.H., Chan, W.S., Man, K.F., Leung, S.H., Xue, Q. (2008). Dual-band rectangular patch hybrid coupler. IEEE Trans. Microwave Theory Tech., 56(7), 1721-1728.
  • [2] Zheng, S., Chan, W.S., Leung, S.H., Xue, Q. (2007). Broadband Butler matrix with flat coupling. Electronics Lett., 43(10), 576-577.
  • [3] Zheng, S.Y., Yeung, S.H., Chan, W.S., Man, K.F., Leung, S.H. (2009). Size-reduced rectangular patch hybrid coupler using patterned ground plane. IEEE Trans. Microwave Theory Tech., 57(1), 180-188.
  • [4] Sun, S., Zhu, L. (2010). Miniaturised patch hybrid couplers using asymmetrically loaded cross slots. IET Microwaves, Ant. Prop., 4(9), 1427-1433.
  • [5] Zheng, S.Y., Deng, J.H., Pan, Y.M., Chan, W.S. (2013). Circular sector patch hybrid coupler with an arbitrary coupling coefficient and phase difference. IEEE Trans. Microwave Theory Tech., 61(5), 1781–1792.
  • [6] Zheng, S.Y., Chan, W.S., Wong, Y.S. (2013). Reconfigurable RF quadrature patch hybrid coupler. IEEE Trans. Industrial Electr., 60(8), 3349-3359.
  • [7] Koziel, S., Bekasiewicz, A. (2017). Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching. Metrol. Meas. Syst., 25.
  • [8] Tseng, C.-H., Chang, C.-L. (2012). A rigorous design methodology for compact planar branch-line and Rat-Race couplers with asymmetrical T-structures. IEEE Trans. Microw. Theory Techn., 60(7), 2085-2092.
  • [9] Kurgan, P., Kitlinski, M. (2011). Doubly miniaturized rat-race hybrid coupler. Microwave Opt. Tech. Lett., 53(6), 1242-1244.
  • [10] Bekasiewicz, A., Koziel, S., Zieniutycz, W. (2016). A structure and design optimization of novel compact microscrip dual-band rat-race coupler with enhanced bandwidth. Microwave and Optical Technology Letters, 58(10), 2287-2291.
  • [11] Nocedal, J., Wright, S. (2006). Numerical Optimization. 2nd edition, New York: Springer.
  • [12] Bakr, M.H., Nikolova, N.K. (2004). An adjoint variable method for time-domain transmission-line modeling with fixed structured grids. IEEE Trans. Microwave Theory Tech., 52(2), 554-559.
  • [13] Koziel, S., Yang, X.S., Zhang, Q.J. (eds.), (2013). Simulation-driven design optimization and modeling for microwave engineering. Imperial College Press.
  • [14] Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J. (2004). Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52(1), 337-361.
  • [15] Koziel, S., Bekasiewicz, A. (2016). Rapid microwave design optimization using adaptive response scaling. IEEE Trans. Microwave Theory Tech., 64(9), 2749-2757.
  • [16] Koziel, S., Bandler, J.W. (2015). Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis. IEEE Trans. Microwave Theory Tech., 63(1), 107-114.
  • [17] Caenepeel, M., Ferranti, F., Rolain, Y. (2016). Efficient and automated generation of multidimensional design curves for coupled-resonator filters using system identification and metamodels. Int. Conf. Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (CMACD).
  • [18] Koziel, S., Bekasiewicz, A. (2015). Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling. IEEE Trans. Microwave Theory Tech., 63(12), 4019-4026.
  • [19] Koziel, S., Bekasiewicz, A. (2016). Surrogate modeling for expedited two-objective geometry scaling of miniaturized microwave passives. Int. J. RF & Microwave CAE, 26(6), 531-537.
  • [20] Koziel, S., Bandler, J.W., Cheng, Q.S. (2010). Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microwave Theory and Tech., 58(8), 2166-2174.
  • [21] CST Microwave Studio, ver. 2013, Dassault Systems, 10 rue Marcel Dassault, CS 40501, Vélizy-Villacoublay Cedex, France.
Uwagi
EN
1. The authors would like to thank Computer Simulation Technology GmbH, a Dassault Systèmes Company, Darmstadt, Germany, for making CST Microwave Studio available. This work was supported in part by the Icelandic Centre for Research (RANNIS) Grant 163299051, and by National Science Centre of Poland Grant 2015/17/B/ST6/01857.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f46d0040-f4ae-4205-9155-a9a1913da14b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.