PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of Impact Energy Delivered by a Drop Weight

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impact sensitivity of energetic materials is an important parameter for their safe handling and storage. The drop height or equivalent potential energy that is required to reach a certain probability of initiation in repeated tests is determined using a drop-weight instrument. In this work, photonic Doppler velocimetry was used to measure the drop weight velocity profile during its fall and rebound. Numerical simulations were performed to correctly understand the velocity records and to find out the differences from the ideal behavior. The efficiency of the conversion from the potential to kinetic energy was revealed for various drop weight masses and drop heights. The measured velocities at the moment of impact followed the free-fall predictions to within 1%. The energy conversion efficiency decreased from 0.997 to 0.992 with the drop weight decrease from 10 to 0.5 kg. The relative energies of the rebound drop-weights decreased with decreasing mass from >0.75 at 2-10 kg down to <0.4 at 0.5 kg. The PDV instrumentation was found useful for validating the drop-weight velocity. The resting times and rebound velocity profiles of the drop-weights agreed with the numerical simulation results that assumed elastic behavior of the instrument.
Rocznik
Strony
171--187
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • OZM Research, Bliznovice 32, Hrochuv Tynec, Czech Republic
  • OZM Research, Bliznovice 32, Hrochuv Tynec, Czech Republic
autor
  • OZM Research, Bliznovice 32, Hrochuv Tynec, Czech Republic
autor
  • OZM Research, Bliznovice 32, Hrochuv Tynec, Czech Republic
Bibliografia
  • [1] Sućeska, M. Test Method for Explosives Springer-Verlag, New York, USA, 1995; ISBN 978-0387945552.
  • [2] Dixon, J.W.; Mood, A.M. A Method for Obtaining and Analyzing Sensitivity Data. J. Am. Stat. Assoc. 1948, 43(241): 109-126; https://doi.org/10.2307/2280071.
  • [3] Šelešovský, J.; Pachman, J. Probit Analysis – A Promising Tool for Evaluation of Explosive’s Sensitivity. Cent. Eur. J. Energ. Mater. 2010, 7(3): 269-277.
  • [4] Neyer, B.T. A D-Optimality-Based Sensitivity Test. Technometrics 1994, 36(1): 61-70; https://doi.org/10.1080/00401706.1994.10485401.
  • [5] Šelešovský, J.; Pelikán, V.; Schuster, J.; Janovsky, B.; Matyás, R. FEST – New Procedure for Evaluation of Sensitivity Experiments. Propellants Explos. Pyrotech. 2020, 45(11): 1813-1818; https://doi.org/10.1002/prep.202000120.
  • [6] Zukas, J.A.; Walters, W.P. Explosive Effects and Applications. Springer-Verlag, New York, 1998; ISBN 978-0-387-98201-4.
  • [7] Coffey, C.S.; De Vost, V.F. Impact Testing of Explosives and Propellants. Propellants Explos. Pyrotech. 1995, 20(3): 105-115; https://doi.org/10.1002/prep.19950200302.
  • [8] Walley, S.M.; Field, J.E.; Biers, R.A.; Proud, W.G.; Williamson, D.M.; Jardine, A.P. The Use of Glass Anvils in Drop-Weight Studies of Energetic Materials. Propellants Explos. Pyrotech. 2015. 40(3): 351-365; https://doi.org/10.1002/prep.201500043.
  • [9] Rae, P.J.; Dickson, P.M. Some Observations About the Drop-weight Explosive Sensitivity Test. J. Dyn. Behav. Mater. 2021, 7: 414-424; https://doi.org/10.1007/s40870-020-00276-2.
  • [10] Marrs, F.W.; Manner, V.W.; Burch, A.C.; Yeager, J.D.; Brown, G.W.; Kay, L.M.; Buckley, R.T.; Anderson-Cook, C.M.; Cawkwell, M.J. Sources of Variation in Dropweight Impact Sensitivity Testing of the Explosive Pentaerythritol Tetranitrate. Ind. Eng. Chem. Res. 2021, 60(13): 5024-5033; https://doi.org/10.1021/acs.iecr.0c06294.
  • [11] von Oertzen, A.; Lehmann, T. Considerations on Energy Deposition with the BAM-Fallhammer. Cent. Eur. J. Energ. Mater. 2016, 13(2): 273-288.
  • [12] Monogarov, K.A.; Meerov, D.B.; Fomenkov, I.V.; Pivkina, A.N. Energy Transferred to Energetic Materials During Impact Test at Reaction Threshold: Look Back to Go Forward. FirePhysChem 2023, 3(3): 255-262; https://doi.org/10.1016/j.fpc.2022.11.003.
  • [13] Künzel, M.; Nesvadba, P. On the Applications of Photonic Doppler Velocimetry. Proc. 14th Int. Symp. on Explosive Production of New Materials: Science, Technology, Business and Innovations (EPNM 2018), Saint Petersburg, Russia, 2018.
  • [14] Strand, T.; Goosman, D.R.; Martinez, C.; Whitworth, T.L.; Kuhlow, W.W. Compact System for High-speed Velocimetry Using Heterodyne Techniques. Rev. Sci. Instrum. 2006. 77: paper 083108; https://doi.org/10.1063/1.2336749.
  • [15] Solid Works Simulation Professional. Dassault Systèmes Solid Works Corporation, USA, 2018.
  • [16] Fiala, J.; Bebr, A.; Matoška, Z. Engineering Tables 1 – Materials for Engineering Production. (in Czech) SNTL – Státní nakladatelství technické literatury, Prague, Czech Republic, 1990; ISBN 80-03-00457-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f464d122-3f3d-4650-b11d-9f933a6e3db4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.