PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dielectric Relaxation of Manganese Modified Bi6Fe2Ti3O18 Aurivillius Type Ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The five-layer Aurivillius type structures with the general chemical formula Bi5Fe2-xMnxTi3O18, where x = 0, 0.6, 1.2 have been synthesized and tested. The SEM studies showed a significant increase in grain size in the manganese-modified Aurivillius type ceramic material (for x=1.2). The increase in the amount of manganese ions (Mn3+) affects the decrease in the temperature at which the relaxation processes take place. Namely from 525 K (1 kHz) and 725 K (1 MHz) for BFT sample (x=0) to 355 K (1 kHz) and 565 K (1 MHz) for BFM12T sample (x=1.2). Using the Arrhenius’s law and the Vogel-Fulcher’s relationship the activation energy (Ea) and the relaxation time have been calculated. The value of Ea increases with the increase of the Mn amount from 0.737 eV (for x=0) to 0.915 eV (for x=1.2).
Twórcy
  • University of Silesia in Katowice, Faculty of Computer Science and Materials Science, Institute of Technology and Mechatronics, 12, Żytnia Str., 41-200 Sosnowiec, Poland
autor
  • University of Silesia in Katowice, Faculty of Computer Science and Materials Science, Institute of Technology and Mechatronics, 12, Żytnia Str., 41-200 Sosnowiec, Poland
Bibliografia
  • [1] B. Aurivillius, Arkiv Kemi 1 463, 499-463 (1949).
  • [2] E. C. Subbarao, J. Am. Ceram. Soc. 45, 166 (1962).
  • [3] H. Schmid, J. Phys.: Condens. Matter. 20, 434201 (2008).
  • [4] D. Khomskii, Physics 2, 20 (2009).
  • [5] D. Bochenek, J. Alloy. Compd. 504, 508-513 (2010).
  • [6] M. Bibes, A. Barthélémy, Nat. Mater. 7, 425-426 (2008).
  • [7] Z. Wang, Y. Zhang, Y. Wang, Y. Li, H. Luo, J. Li, D. Viehland, ACS Nano 8 (8), 7793-7800 (2014).
  • [8] J. A. Bartkowska, J. Dercz, J. Exp. Theor. Phys. 117 (5), 875-878 (2013).
  • [9] M. Villegas, T. Jardiel, A. C. Caballero, J. F. Fernandez, J. Electroceram. 13, 543-548 (2004).
  • [10] Zuo X, Yang J, Yuan B, Song D, Tang X, Zhang K, Zhu X, Song W, Dai J, Sun Y, RSC Adv. 4, 46704 (2014).
  • [11] W. Bai, G. Chen, J. Y. Zhu, J. Yang, T. Lin, X. J. Meng, X. D. Tang, C. G. Duan, J. H. Chu, Appl. Phys. Lett. 100, 0829021 (2012).
  • [12] K. Tang, W. Bai, J. Liu, J. Yang, Y. Zhang, C. G. Duana, X. Tanga, J. Chu, Ceram. Inter. 41, S185-S190 (2015).
  • [13] X. Y. Mao, W. Wang, X. B. Chen, Sol. St. Comm. 147 (5-6), 186-189 (2008).
  • [14] H. Yan, H. Zhang, R. Ubic, M. Reece, J. Liu, Z. Shen, J. Mater. Sci. Mater. Electron. 17, 657-661 (2006).
  • [15] H. S. Shulman, D. Damjanovic, Setter N, J. Am. Ceram. Soc. 83 (3), 528-532 (2000).
  • [16] A. L. Kholkin, M. Avdeev, M. E. V. Costa, J. L. Baptista, Appl. Phys. Lett. 79, 662-664 (2001).
Uwagi
EN
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f45cf2f9-590f-4702-8d5d-c211d9c20f08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.