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Abstract

This paper presents the method of detecting outlying reference points by applying robust free
adjustment. The article contains the theoretical basis of the robust free adjustment. Theoretical
considerations are supplemented by a numerical example showing the possible practical applications.
In this paper is also included example, which presents detecting of reference points contaminated by
gross error, in the case of existence gross errors in observation sets.

Introduction

Theory of the robust adjustment of observation set is one of the most
rapidly developing estimation methods. Development of methods of the
geodetic networks adjustment concern, especially the robust adjustment for
gross errors. General idea of the robust estimation is identify and reduce
influence of outliers in the adjustment solution. Reduce the influence of the
outliers or their complete elimination can be achieved by damping weights of
observations (e.g. HUBER 1981, YANG 1994). It is a very useful property,
especially in the analysis of deformation. In the measurements of displacement
and deformations, gross errors, may occur not only in the observation but also,
in the coordinates of reference points. This may be related to the situation
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when the reference point is displaced. It is obvious that performing the correct
interpretation of the results is dependent of the reference points. There are
known a lot of robust methods concerned a control of reference mark stability
(e.g. DUCHNOWSKT 2010). In practice, there might be also other situations, that
are related with the change of the reference points coordinates. It happens
when the coordinates of the point are contaminated by gross errors due to
incorrectly inputted data. It is known that if we take that point as a fixed point
during adjustment, then the results of the adjustment will be incorrect. In such
cases detection of the contaminated point of the network can be obtain by the
robust free adjustment. The identification of the contaminated points and
reduction of their influence on the final result of the adjustment was proposed
in (WISNIEWSKI 2002). Making the geodetic network “free” and applying the
robust free adjustment, large increments to the outlying coordinate can be
expected. Reduce influence of the contaminated coordinates on the final
adjustment results can be obtain by modifying elements of the coordinates
weight matrix. Simultaneously are designated the values of outlying coordi-
nates. The principles of the robust free adjustment are related to the classical
method of the robust M — estimation (WISNIEWSKI 2005). In practice, there
might be a situation where besides gross errors in the coordinates, a gross
errors in the observations may also occur. In such case it is recommend to
apply the hybrid M - estimation (CZAPLEWSKI 2004). In this method occurs
both, damping weights of the coordinates weight matrix and damping weights
of the observations weight matrix.

Theoretical foundation of free adjustment
of the geodetic network

The classical estimation methods assume, that the coefficients matrix A is
a column, full rank matrix (WISNIEWSKI 2005). Then the matrix ATPA (where
P is weight matrix of observations) is a non-singular matrix, and its inverse is
following (ATPA)™. In case of the free geodetic network, rank of the matrix
A (where n is the number of observations and m is the number of the

ggrameters) is less then quantity of its columns and difference between both
values is equal to the defect (further: d) of matrices, i.e. d = m — ranki(A). In
case of geodetic networks defect of matrices A, can be identified with the
freedom degrees relative to the adopted coordinate system (external degrees of
freedom). A properly chosen network cannot have internal degrees of freedom
(e.g. similarity). Thus, angular — linear network (2D network) has three
degrees of freedom (further: SW) — displacement due to X, Y axes and rotation.
Assume that at the network shown in Figure 1 the points 1°, 2°, 3° have the
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approximate coordinates, and the points 1, 2, 3, have estimated coordinates.
Due to the fact, that network is free (SW = 3), all of the adjustment points may
be displaced relative to the approximate points. The main aim of the free
adjustment is optimal fitting adjustment network to approximate network.

IO(XO, Yo)

dX, - 2°(X°, Y")

Y

Fig. 1. Geometric interpretation of the free adjustment

Under consideration in the free adjustment of geodetic networks, where
defect is different from zero, should be additional criterion for increments
dX;, dY; for all points in the network. Provided that criterion has a form
Dx(dX) = dX"PxdX = min.,solution of the free adjustment problem can be
represented by the following equations (WISNIEWSKI 2005).

"V=AdX +L
&(dX) = V'PV = min. 1
Ox(dX) = dX"™PxdX = min.

where Px is matrix of parameters weights X, and thus the weights matrix of
demanding increments dX. Solving this problem it is necessary to take into
account only the aim function &dX) = VPV which gives normal equations
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ATPAdX + ATPL = 0 with a singular matrix of coefficients ATPA. Having
matrix A and vector dX in the following forms:

A= [A,Ad

n,m n,r n,d

L dX = [dxz dXE],
1d

1,r

where r = rank(ATPA), normal equations can be written in following way:

mxm

ATPAdX + ATPL = 0 & @)
Ar (mr Ar =
[AE PIA, A,] [dxd] + [A;’d] PL =0 3)
[A? PA, A” PAd] [d;(j +[ATPL] _ @
AT PA. AT PA,||d ATPL

In this way we get a system consisting of two matrix equations. They
contain r and d of equations respectively. Due to the fact that the rank
(ATPA) = r, so this matrix is singular. So if the vector of increments dX = [&]

mxm

has solution of the first matrix system, then we can certainly say that it has
also solution of the second matrix system. Therefore, a system of two matrix
equations may be replaced by the first of them (SZUBRYCHT, WISNIEWSKI 2004,
WoLr 1972).

A"PAdX + A’PL = 0 &
ATPAdX. + ATPA;dX; + APL = 0 (5)

with nonsingular matrix of coefficients ATPA,. This is consistent with the
conception of minimum norm g - inverse (RAO 1973). The first system
of normal equations consist of r independent equations with m = r + d
unknowns. Because of the datum defect exist, so this is a system of equation
with more quantity of unknowns than equations. The quantity of equation in
the second system of equations is equal to the defect of network. It means that
equations forming second system of equations are independent from the
equations of first system (SZUBRYCHT, WISNIEWSKI 2004). Therefore, the
system (4) can be written in the form (5). Derivation matrix

B = [ATPA, ATPA,] (6)
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equations (5) can also be written as
BdX + ATPL = 0 (7

After partial (only with function &(dX) = VPV = min.) solving the task
(1), the final optimization form is obtained

J BdX + A’PL = 0

8)
l@x(dX) = dX"PxdX = min.

This is conditional equation and using Lagrange’s functions can be re-
placed by formula

J BdX + A’PL = 0
1 P (dX) = @x(dX) - 2K"(BdX + ATPL)= 9)
= dX"PxdX - 2K"(BdX + A’PL) = min.

where K is correlative vector (Lagrange’s multipliers). The solution (9) is
a vector (WISNIEWSKI 2005):

dX = -Px'B7(BPx'B7)'ATPL (10)

Accuracy analysis of the free adjustment is similar to the classic adjust-
ment. During calculation estimator of the variance coefficient, it should be
taken into consideration that the number of redundant observation is in-
creased by defect network. This estimator has a form:

VPV

nom+d (v

mi =

Calculation mean errors of the coordinates were conducted in a similar to
the classical method, however the covariance matrix of adjustment estimated
parameters, has in a free adjustment following form (SZUBRYCHT, WISNIEWSKI
2004, WISNIEWSKI 2005).

Cx = mi{Px'B"(BPx 'B")'A’PA,(BPx 'B")'BPx! (12)
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In the robust free adjustment, particular importance has covariance matrix
of the increments assuming erroneous of the approximate coordinates vector
Cxep). Taking into account that dX and X° are two independent random
variables in the vector X = X° + dX, we can derive the formula of covariance
matrix Cgqp) for my = 1 (WISNIEWSKI 2005):

Cxehymo=1 = CxBT(BPx'B?)'BPx' + Cx (13)

where Cxo = m3Px!, is the covariance matrix of the vector of the approximate
coordinates X°. The diagonal values of the matrix Cges)mo=1), are mean squared
errors of the adjusted estimates.

Robust free adjustment

The ideas of robust free adjustment are location and reduction the influ-
ence of outlying increments to geodetic coordinate of the points. The location of
such coordinates in case of an gross error is not difficult. In free geodetic
network occurs significantly increase value of coordinates increments bur-
dened by gross error in relation to other increments. Reducing outliers
increments in similar to the robust M — estimations (KAMINSKI, WISNIEWSKI
1992a, 1992b), is conducted by using damping of weight matrix, in our case
weight matrix of coordinates Px (WISNIEWSKI 2005). For this purpose, we can
applied one of the damping functions, such as Huber, Hampel or Danish
function (KAMINSKI, WISNIEWSKI 1992a, 1992b, WISNIEWSKI 2005). In this
study Danish damping function was used to increments dX and dY as result we
have following form (KAMINSKI, WISNIEWSKI 1992a, 1992b, KRARUP, KUBIK
1983):

- _| 1 for dX € Ax = (~kx;kx)

WAX) = oxp (- dX] ket for  |dX]> kx 1
- | 1 for dY € Ay = (~ky;ky)

PAAY) = oxp 1| AT — ko) for  |dY|> hy 15

where:

dX - standardized increment for coordinate X,

dY - standardized increment for coordinate Y,

Ax = {~kx;kx) — acceptable range for standardized increments dX,
Ay = {(-ky;ky) — acceptable range for standardized increments dY,
Ix, ly, gx, &y — control parameters.
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Free robust adjustment solution is iterative. The first point of this process
is to calculate the free increments dX according to equation (10), and their
covariance matrix in the form (13). On this basis standardized increments are
calculated:

ax; = S5 gy, = 2 (16)

mj(j’

where mg, my, are mean errors of the estimators dX;, dY; (square root of
suitable elements of the matrix éx(zb)(m0=1>). Basis on value (16) and dumping
function (14) and (15), equivalent weight matrix of increments vectors dX is
calculated. Denoting this matrix by Px, we can write:

Py = PxT(dX) 17
where:
T(dX) = Diag {tx(dX), ty(dT0),..., tx(dX,,), trdX,)} (18)

is diagonal damping matrix. If all standardized increments dﬁ,, dXA(,, Jj=1..n,,
are in their acceptable ranges (they are random), then the damping matrix
T(df() is the unit matrix. Afterwards we get Px = Px which ends the
adjustment process. Otherwise, the next step is the iteration, in which vector of
free increments is recalculated

dX = -Px'B"(BPx'B")'A’PL (19)
with covariance matrix

Csoimo=1) = CxBT(BPx'B)'BPx' + Cx (20)
Iterative process is continued so long until all the standardized increments

will have values in their limits, respectively Ax and Ay.

Characteristics of the geodetic test network

The first step was designed and staked out regular geodetic network,
consisting five points on the area Kortowo II. The network have a shape of

a square of side 200 [m] (Fig. 2). Network measurement was carried out in
a single measurement session, obtained the observations presented in Figure 2.
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Fig. 2. The measurement results of the test network
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Fig. 3. The variants of the point no. 4 position

Let assume that the coordinates of the fourth point were contaminated by
gross error. Then assumed that point as a fixed point during adjustment will
have a negative influence on the obtained results of the adjustment. For the
research purposes three variants of the position of the 4 (denoted by 4% 4%
and 47 ) were designed, which simulate gross error in the coordinates (Fig. 3.).
Values of the coordinates of point no. 4 are presented in Table 1. The aim of the
research is to examine detecting of contaminated coordinates in the network
by apply the robust free adjustment. Additionally the damping effect of
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weights matrix of coordinates on the final results of the network adjustment
will be examined. Displacement AX and AY will be treated as gross errors of the
coordinates.

Table 1
The variants of the approximate coordinates of the point no. 4
Variant
A
4~ 4P 47
AX[m] AX* = 0.00 AXP = 0.30 AX" = 0.31
AY[m] AY” = 0.30 AY? = 0.00 AY” = 0.24

Based on data from measurements approximate coordinates of pointsin the
local coordinate system were calculated. To calculate the approximate coordi-
nates, let assume following coordinates of point no. 1 X = 1000 [m], Y = 1000 [m]
and azimuth A;.4 = 7.0000®', Obtained, approximate coordinates are shown in
Table 2.

Table 2
Summary of approximate coordinates
No. 1 2 3 4 4= 4 4 5
point
Computed X[m] |1,000.00| 978.09 (1,176.83(1,198.76(1,198.80(1,199.05(1,199.09(1,088.39

approximate
coordinates Y[m] |1,000.00|1,198.79|1,220.74|1,021.94/1,021.65|1,021.98|1,021.71|1,110.40

Results of robust free adjustment

The results of robust free adjustment are the estimates of increments to the
approximate coordinates of all points. The test network was adjusted freely for
all of the four variants of the approximate coordinates. The network was
adjusted for following means errors m; = 35%, my = 0.025 [m]. The results of
such adjustment are summarized in Table 3.

These results show a clear difference between the received estimates of
parameters. In case of the classical adjustments, establishing the 4% 4% or 47 as
a fixed point, cause that the results of the adjusted coordinates are even more
distorted. In free robust adjustment Danish damping function was used. In the
acceptable ranges Ax = < —kx; kx > and Ay = < —ky; ky > for standardized
increments dX and dY, was taken kx = ky = 1. Then, with the probability
equal 0.68 can be said that standardized increments which do not belong to the
acceptable ranges are called outliers increments. In process of robust free



188

Marek H. Zienkiewicz, Tomasz Batluta

Table 3
Results of the classical free adjustment
) Variant
No. point I 11 III v
X [m] 1,000.00 999.97 1,000.10 1,000.07
Y, [m] 1,000.00 999.98 999.98 999.95
X, [m] 978.07 978.10 978.09 978.13
Y, [m] 1,198.79 1,198.77 1,198.76 1,198.74
X, [m] 1,176.85 1,176.90 1,176.86 1,176.91
Vs [m] 1,220.72 1,220.63 1,220.76 1,220.68
X, [m] 1,198.77 1,198.74 1,198.86 1,198.84
Y, [m] 1,021.95 1,021.86 1,022.00 1,021.91
X; [m] 1,088.39 1,088.40 1,088.45 1,088.46
Y5 [m] 1,110.40 1,110.35 1,110.41 1,110.36

adjustment, let assume the following parameters gx = gy = 2 and lx = [y = 0.6.
Such a strict qualification has the relation to main aim, namely the effective
identification of point displacement. Robust free adjustment is iterative. In the
first step we assumed that the weight matrix of increment vector dX as the
unit matrix. Therefore starting step is classical free adjustment is with
optimization criterion dX"PxdX = dX”dX = min. Then dX© = dX, and next
dX'© = dX. In each next step, the j-th iteration matrix of weights Py is replaced
by the equivalent matrix Px? = Px/""T(dX YY), where T(dX ") is diagonal

Table 4
Results of the robust free adjustment
Variant
Specification II III v

X dX X dX X dX
Xl [m] 1,000.01 0.01 1,000.04 0.04 1,000.01 0.01
f’l [m] 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00
X, [m] 978.07 -0.02 978.07 -0.02 978.08 -0.01
Y, [m] 1,198.78 -0.01 1,198.78 -0.01 1,198.78 -0.01
X; [m] 1,176.86 0.03 1,176.85 0.02 1,176.86 0.03
¥s [m] 1,220.71 -0.03 1,220.74 0.00 1,220.71 -0.03
X, [m] 119877 | ‘203 o | 119880 AX’S'& 1,198.78 AX";-%;_&
Y, [m] 1,021.94 Ayofg_ﬂ 1,021.98 AYoéogﬁ 1,021.94 Ayofgﬂ
X; [m] 1,088.40 0.01 1,088.41 0.02 1,088.40 0.01
?5 [m] 1,110.40 0.00 1,110.41 0.01 1,110.39 -0.01
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damping matrix. After ten iterative steps, the following results of robust free
adjustment were obtained.

The results of the computations clearly show which coordinates of the
points are contaminated by gross terror. Of course, the method is the most
effective for single outlying point in the network. With a greater number of
contaminated points, their detection would be difficult or even impossible. The
coordinates obtained in robust free adjustment were compared with the
coordinates obtained in the classical free adjustment (variant I in Tab. 3.). The
results of this comparison including the differences between the respective
coordinates are summarized in Table 5.

Table 5
Summary of differences adjustment of network coordinates
Specification | o | g | | o | ot | ) | o | i |
X; - X 0.01 | 0.00 | 0.00 | -0.01 | 0.01 | -0.01 | 0.00 | -0.01 | 0.01 | 0.00
Xm - X 0.04 | 0.00 | 0.00 | -0.01 | 0.00 | 0.02 | 0.03 | 0.03 | 0.02 | 0.01
Xv-X 0.01 | 0.00 | 0.01 |-0.01 | 0.01 | -0.01 | 0.01 | -0.01 | 0.01 | -0.01

The largest differences occur between the results of the classical free
adjustment and the results of the robust free adjustment in III variant (for
point 4 with approximate coordinates 4%). Let consider a situation when in
network, besides outlying points exist also observations contaminated by gross
error. For the purpose of numerical example, an observation d1-4 was con-
taminated by gross error 0.400 m (d;4 = 199.573 m). The adjustment is
conducted according to principles of hybrid M — estimation (CZAPLEWSKI 2004).
This method is characterized by the simultaneous damping weights of observa-
tion weight matrix and damping weights of coordinates weight matrix. There-
fore, besides the standardized increments the standardized corrections is
determined.

]

. = Vi i =12,.., 20 (21)

~ 2
my;

To determine these standardize corrections, it is necessary to specify the
form of the covariance matrix of the corrections vector Cy. The values on the
diagonal on the covariance matrix are the squares of the mean errors of
corrections. The covariance matrix of the corrections vector derivation is
presented in the paper (CZAPLEWSKI 2004). Below the final form of covariance
matrix of the corrections vector is presented:
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Cyv = mM,(AP{'A” + PYMJ (22)
where
M, = I - AP<!B7(BPx!B7)AZP (23)

To identify and reduce the influence of observation contaminated by gross
errors, the same value of parameters g, / and % as in the identification process
of contaminated coordinates of the points is used. The adjustment procedure is
analogous like in the previous example. In this case two equivalent weights
matrices: Px and Px? = PxVVT(LY?), where T(L?) is diagonal damping
matrix are determined. After ten iterative steps, obtained the following results
of geodetic network adjustment by applying hybrid M — estimation.

Table 6
The results of robust free adjustment (hybrid M — estimation)
Variant
Specification II IIT v

X dX X dX X X
X [m] 1,000.01 0.01 1,000.03 0.03 1,000.00 -0.00
Y1 [m] 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00
X, [m] 978.08 -0.01 978.07 -0.02 978.07 -0.02
Y, [m] 1,198.78 -0.01 1,198.78 -0.01 1,198.78 -0.01
X; [m] 1,176.86 0.03 1,176.85 0.02 1,176.85 0.02
Y; [m] 1,220.72 -0.02 1,220.75 0.01 1,220.72 -0.02
X, [m] 1,198.77 -0.03 1,198.79 -0.26 1,198.77 -0.32
Y. [m] 1,021.94 0.29 1,021.97 -0.01 1,021.94 0.23
X5 [m] 1,088.39 0.00 1,088.40 0.01 1,088.39 -0.00
Y5 [m] 1,110.39 -0.01 1,110.41 0.01 1,110.40 -0.00

The results of the computations clearly show, that the coordinates were
contaminated by gross error. Similar to the free robust adjustment, with an
increasing number of observation contaminated by gross errors, it is more
difficult to identified the contaminated points. It should be noted, that
quantities of outliers are not the only problem with regard to the identification
of outliers points. Unfortunately, this method is most effective in case of large
errors in approximate coordinates.
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Table 7
Results of the robust free adjustment
Variant
Specification \'% VI VII VIII X

X dX X dX X dX X dX X dX
X, [m] |1,000.00| 0.00 |1,000.01| 0.01 |1,000.01| 0.01 |1,000.01| 0.01 |1,000.02 | 0.02
Y. [m]  {1,000.00 | 0.00 |1,000.00 | 0.00 |1,000.00| 0.00 |1,000.00 | 0.00 |1,000.00 | 0.00
X, [m] 978.07 |-0.02 | 978.07 |-0.02 | 978.07 | -0.02 | 978.07 |-0.02 | 978.07 | -0.02
¥, [m]  |1,198.79| 0.00 |1,198.79 | -0.00 | 1,198.79 | 0.00 |1,198.79 | 0.00 |1,198.79 | 0.00
X;[m] [1,176.85| 0.02 |1,176.85| 0.02 [1,176.85| 0.02 |1,176.85 | 0.02 |1,176.85 | 0.02
Vs [ml  |1,220.72 | -0.02 | 1,220.72 | -0.02 | 1,220.72 | -0.02 | 1,220.72 | -0.02 | 1,220.73 | -0.01
X, [m] |1,198.77| 0.00 |1,198.78 | -0.00 | 1,198.78 | -0.01 | 1,198.78 | -0.02 | 1,198.78 | -0.03
¥, [m] |1,021.96| 0.01 |1,021.96 | 0.01 |1,021.96 | 0.01 |1,021.96 | 0.01 |1,021.96 | 0.01
X;[m] |1,088.39 | 0.00 |1,088.39 | 0.00 |1,088.40| 0.01 |1,088.40 | 0.01 |1,088.40 | 0.01
Vs [m] |1,110.41| 0.01 |1,110.41| 0.01 |1,110.41| 0.01 |1,110.41| 0.01 |1,110.41| 0.01

For small changes in the approximate coordinates, the coefficients matrix
A is changing very slightly and has little effect on the final value of the vector
dX. Table 7. presents the results of the robust free adjustment obtained for
following variants of approximate coordinates (variant V — X% = 119,877 and
Y% = 1,021.95, variant VI - X4 = 119,878 and Y$ = 1,021.95, variant VII - X%
= 119,879 and Y9 = 1,021.95, variant VIII - X3 = 119,880 and Y9 = 1,021.95,
variant IX — X% = 119,881 and Y9 = 1,021.95).

Conclusions

Developing the estimation methods has a significant influence on geodesy
and related sciences. Implementation new computational algorithms, engin-
eers gain new opportunities for solution geodetic observation. In recent years
the development concern methods of robust estimation for gross errors. In this
paper we have shown that the practical importance has also robust free
adjustment. Classical free adjustment is most commonly used to adjustment
free realization network (or other special-purpose networks). Such adjustment
allow for optimum fitting adjustment of network to approximate network
(network with known approximate coordinates). It is also possible objective
analysis of the accuracy, independent of the variant elimination degrees of
freedom network. Robust free adjustment remains mentioned above features
of classical free adjustment, however allows identifying of points whose
coordinates are burdened with gross errors. The reason of such errors may be
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different, for example, resulting from unrecognized displacements points of
network. In our test network, values of movements were known. This enabled
the evaluation of effectiveness of robust free adjustment. The paper shows very
interesting properties of the hybrid M — estimation which concerned damping
weight of observation weight matrix and damping weight of coordinates weight
matrix. In each of analyzed variant, a single outlying point has been detected.
Although the experiment was carried out successfully this method has some
limitations of the approach with regard to practical applications. These
limitations concern among others the values of errors of the approximate
coordinates that need to be in the range of linearity for the coefficients of
matrices A. Additionally, it should be noted that method presented in this
paper is most effective in a situation where only one point is outlying. In the
case of existing more than one outlying point in the network, the detection
problems of these points may appear. Robust free adjustment can be further
developed and detailed comparative analysis. This may particular apply selec-
tions of other damping function. Detailed research of this method should
concern the reliability against a larger number observation and outlying
points.
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