PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation of exhaust emissions from the gasoline engine of a light duty vehicle in the Real Driving Emissions test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article contains the research results and analysis of the processes that take place as part of a gasoline engine light duty vehicle Real Driving Emissions test. Dimensionless characteristics of exhaust emission and fuel mass consumption in the RDE test were also determined: emission intensity, particle number emission intensity, fuel mass consumption intensity. An algorithm for determining the characteristics specific distance pollutant emission, specific distance particle number and specific distance fuel mass consumption in the vehicle speed domain in the RDE test was presented using the Monte Carlo method. The determined characteristics were approximated by polynomial functions in the form of sets of points. These relationships were characterized by a large dispersion of values, which was primarily due to the fact that the random values of the averaging limits contain very different engine operating conditions.
Rocznik
Strony
art. no. 165880
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
  • The National Center for Emissions Management, The Institute of Environmental Protection, Poland
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
Bibliografia
  • 1. André M. The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of The Total Environment 2004; 334–335(1): 73–84, https://doi.org/10.1016/j.scitotenv.2004.04.070.
  • 2. Andrych-Zalewska M, Chłopek Z, Merkisz J, Pielecha J. Analysis of the operation states of internal combustion engine in the Real Driving Emissions test. Archives of Transport 2022; 61: 71–88, https://doi.org/10.5604/01.3001.0015.8162.
  • 3. Andrych-Zalewska M, Chłopek Z, Merkisz J, Pielecha J. Research on exhaust emissions in dynamic operating states of a combustion engine in a Real Driving Emissions test. Energies 2021; 14, 5684, https://doi.org/10.3390/en14185684.
  • 4. BUWAL (Bundesamt für Umwelt, Wald und Landschaft), INFRAS AG (Infrastruktur-, Umwelt-und Wirtschaftsberatung). Luftschadstoffemissionen des Strassenverkehrs 1950–2010, BUWAL-Bericht 1995; 255.
  • 5. Chłopek Z, Laskowski P. Pollutant emission characteristics determined using the Monte Carlo Method. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2009; 2(42).
  • 6. Chłopek Z. Synthesis of driving cycles in accordance with the criterion of similarity of frequency characteristics. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2016; 18: 572–577, https://doi.org/10.17531/ein.2016.4.12.
  • 7. Claßen J, Krysmon S, Dorscheidt F, Sterlepper S, Pischinger S. Real Driving Emission calibration –Review of current validation methods against the background of future emission legislation. Appl. Sci. 2021; 11, 5429, https://doi.org/10.3390/app11125429.
  • 8. COPERT 5 –Manual. https://copert.emisia.com/manual/ (2019.12.01).
  • 9. DieselNet: Engine & Emission Technology Online. https://dieselnet.com.
  • 10. EEA/EMEP Emission Inventory Guidebook 2019.
  • 11. INFRAS AG. Handbook emission factors for road transport 3.2. Quick reference. Version 3.2. Bern, 2014.
  • 12. Luján J M, Piqueras P, de la Morena J, Redondo F. Experimental characterization of Real Driving Cycles in a light-duty diesel engine under different dynamic conditions. Appl. Sci. 2022, 12, 2472, https://doi.org/10.3390/app12052472.
  • 13. Metropolis N, Ulam S. The Monte Carlo Method. Journal of the American Statistical Association 1949; 247(44): 335–341, https://doi.org/10.2307/2280232.
  • 14. PEMS Testing –Portable Emissions Measurement Systems (horiba.com).
  • 15. Pielecha J, Merkisz J, Markowski J, Jasiński R. Analysis of passenger car emission factors in RDE tests. E3S Web of Conferences 2016, 10, 00073, https://doi.org/10.1051/e3sconf/20161000073.
  • 16. Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 1964; 36(8): 1627–1639, https://doi.org/10.1021/ac60214a047.
  • 17. Semtech-DS on board vehicle emissions analyzer. User manual. Document: 9510-086, Revision: 2.01, October 2010.
  • 18. Suarez-Bertoa R, Valverde V, Clairotte M, Pavlovic J, Giechaskiel B, Franco V, Kregar Z, Astorga C. On-specific distance emissions of passenger cars beyond the boundary conditions of the Real-Driving Emissions Test. Environ. Res. 2019; 176, 108572, https://doi.org/10.1016/j.envres.2019.108572.
  • 19. The ARTEMIS European driving cycles for measuring car pollutant emissions, https://pubmed.ncbi.nlm.nih.gov/15504494.
  • 20. TSI 3090 EEPS™ (Engine Exhaust Particle Sizer™). User manual. 2008.
  • 21. Valverde V, Mora B A, Clairotte M, Pavlovic J, Suarez-Bertoa R, Giechaskiel B, Astorga-Lorens C, Fontaras G. Emission factors derived from 13 Euro 6b light-duty vehicles based on laboratory and on-specific distance measurements. Atmosphere 2019; 10, 243, https://doi.org/10.3390/atmos10050243.
  • 22. Wang Z, Wu P, Yu N, Zhang Y, Wang Z. Analysis of the influence of RDE test data processing methods on the emission results of China 6 light duty vehicles. E3S Web of Conferences 2021; 268, 01022, VESEP2020, https://doi.org/10.1051/e3sconf/202126801022.
  • 23. Weiss M, Paffumi E, Clairotte M, Drossinos Y. Including cold-start emissions in the Real-Driving Emissions (RDE) test procedure. Report number: JRC 105595. Affiliation: Joint Research Centre of the European Commission, Directorate for Energy, Transport and Climate, Sustainable Transport Unit, Via E. Fermi 2749 I-21027 Ispra (VA) Italy.
  • 24. Yan F, Wang Y, Zheng S, Meng Y, Xie J. Research on the correlation between test cycles and RDE Test. International Conference on Application of Intelligent Systems in Multi-modal Information Analytics MMIA 2019; 1152–1159. https://doi.org/10.1007/978-3-030-15740-1_146
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4590847-aced-4b28-a3e7-6c2f5e21dcdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.