PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous Adsorption of Rare Earth Metal Ions on Chitosan-Coated Fumed Silica – Characterization, Kinetics, and Isotherm Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study manufactured and utilized the chitosan-coated fumed silica composite (CS@silica) for simultaneous adsorption of rare earth elements (REEs) of Ce(III), La(III), and Nd(III) cations in an aqueous solution. The CS@silica composite underwent characterization using a CHNOS analyzer, Brunauer-Emmett-Teller (BET) surface area analyzer, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrophotometer, scanning electron microscope coupled with energy-dispersive X-ray (SEM-EDX) spectrophotometer, and X-ray diffraction (XRD) analyzer. The findings indicated that the CS@silica composite exhibited a lack of pores and possessed a specific surface area of 1.27 m2 /g. Additionally, it was observed that the composite contained a significant amount of oxygen and nitrogen atoms, which serve as the active sites for the adsorption of REEs. The maximum adsorption capacities of Ce(III), La(III), and Nd(III) cations were determined under optimal experimental conditions. These parameters included a pH of 4, an adsorbent dose of 0.01 g, and an equilibrium duration of 20 min. The maximum adsorption capacities for Ce(III), La(III), and Nd(III) cations were found to be 341, 241, and 299 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic model. The desorption percentage of REEs-loaded CS@silica composite was significantly low when exposed to deionized water and hydrochloric acid (0.01 and 0.02 M). This suggests that there is a chemical interaction between the REEs and the active site on the surface of the composite. The predominant adsorption process proposed was complexation, with ion exchange and electrostatic contact playing a minor role. The CS@silica composite is highly promising for the recovery of REEs because of its rapid adsorption and high adsorption capacities.
Słowa kluczowe
Twórcy
  • Department of Chemistry, Universiti Teknologi MARA, Cawangan Pahang, 26400, Jengka, Pahang, Malaysia
  • Department of Chemistry, Universiti Teknologi MARA, Cawangan Pahang, 26400, Jengka, Pahang, Malaysia
  • Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Department of Chemistry, College of Science, Ibb University, Ibb, Yemen
  • Department of Chemistry, Universiti Teknologi MARA, Cawangan Pahang, 26400, Jengka, Pahang, Malaysia
Bibliografia
  • 1. Ahmed, M.J., Hameed, B.H. and Hummadi, E.H. 2020. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate Polymers, 247, 116690. https://doi.org/10.1016/j.carbpol.2020.116690
  • 2. Al-Amrani, W.A., Abdullah, R., Megat Hanafiah, M.A.K. and Mohd Suah, F.B. 2023. Removal of Ni(II) Ions by citric acid-functionalized Aloe vera Leaf Powder – Characterisation, Kinetics, and Isotherm Studies. Journal of Ecological Engineering, 24(4), 217–227. 10.12911/22998993/159633
  • 3. AlAmrani, W.A., Hanafiah, M.A.K.M. and Mohammed, A.H.A. 2022. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. Environmental Science and Pollution Research https://doi.org/10.1007/s11356-022-23062-0
  • 4. Arciszewska, Ż., Gama, S., Leśniewska, B., Malejko, J., Nalewajko-Sieliwoniuk, E., ZambrzyckaSzelewa, E. and Godlewska-Żyłkiewicz, B. 2022. The translocation pathways of rare earth elements from the environment to the food chain and their impact on human health. Process Safety and Environmental Protection, 168, 205–223. https://doi.org/10.1016/j.psep.2022.09.056
  • 5. Asadollahzadeh, M., Torkaman, R. and Torab-Mostaedi, M. 2021. Extraction and separation of rare earth elements by adsorption approaches: current status and future trends. Separation & Purification Reviews, 50(4), 417–444. 10.1080/15422119.2020.1792930.
  • 6. Atia, A.A., Doni, A.M. and Al-Amrani, W.A. 2009. Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups. Chemical Engineering Journal, 150, 55–62. http://doi.10.1016/j.cej.2008.12.004
  • 7. Benettayeb, A., Seihoub, F.Z., Pal, P., Ghosh, S., Usman, M., Chia, C.H., Usman, M. and Sillanpää, M. 2023. Chitosan nanoparticles as potential nanosorbent for removal of toxic environmental pollutants. Nanomaterials, 13(3), 447.
  • 8. Budnyak, T.M., Błachnio, M., Slabon, A., Jaworski, A., Tertykh, V.A., Deryło-Marczewska, A. and Marczewski, A. W. 2020. Chitosan deposited onto fumed silica surface as sustainable hybrid biosorbent for acid orange 8 dye capture: Effect of temperature in adsorption equilibrium and kinetics. The Journal of Physical Chemistry C, 124(28), 15312–15323. 10.1021/acs.jpcc.0c04205
  • 9. Donia, A.M., Atia, A.A., Al-amrani, W.A. and M., E.-N.A. 2009. Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. Journal of Hazardous Materials, 161, 1544–1550. http://10.1016/j.jhazmat.2008.05.042
  • 10. dos Reis, G.S., Dotto, G.L., Vieillard, J., Oliveira, M.L.S., Lütke, S.F., Silva, L.F.O., Lima, É.C., Salau, N.P.G. and Lassi, U. 2023a. Uptake the rare earth elements Nd, Ce, and La by a commercial diatomite: kinetics, equilibrium, thermodynamic and adsorption mechanism. Journal of Molecular Liquids, 389, 122862. https://doi.org/10.1016/j.molliq.2023.122862
  • 11. dos Reis, G.S., Pinto, D., Lima, É.C., Knani, S., Grimm, A., Silva, L.F.O., Cadaval, T.R.S. and Dotto, G.L. 2022. Lanthanum uptake from water using chitosan with different configurations. Reactive and Functional Polymers, 180, 105395. https://doi.org/10.1016/j.reactfunctpolym.2022.105395
  • 12. dos Reis, G.S., Pinto, D., Lütke, S.F., Lima, É., Silva, L.F.O., De Brum, I.A.S. and Dotto, G.L. 2023b. Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel. Journal of Rare Earths. https://doi.org/10.1016/j.jre.2023.04.008
  • 13. Feng, S., Du, X., Bat-Amgalan, M.; Zhang, H., Miyamoto, N. and Kano, N. 2021. Adsorption of REEs from aqueous solution by EDTA-chitosan modified with zeolite imidazole framework (ZIF8). International Journal of Molecular Sciences, 22, 344. https://doi.org/10.3390/ijms22073447
  • 14. Hamza, M.F., Guibal, E., Abdel-Rahman, A.A.-H., Salem, M., Khalafalla, M.S. and Wei, Y.Y.X. 2022. Enhancement of Cerium sorption onto Urea-Functionalized magnetite chitosan microparticles by sorbent sulfonation – Application to ore leachate. Molecules 27, 7562. https://doi.org/10.3390/molecules27217562
  • 15. Ho, Y.S. and McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
  • 16. Iftekhar, S., Heidari, G., Amanat, N., Zare, E.N., Asif, M.B., Hassanpour, M., Lehto, V.P. and Sillanpaa, M. 2022. Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: A review. Environmental Chemistry Letters, 20(6), 3697–3746.
  • 17. Javadian, H., Ruiz, M. and Sastre, A.M. 2020. Response surface methodology based on central composite design for simultaneous adsorption of rare earth elements using nanoporous calcium alginate/ carboxymethyl chitosan microbiocomposite powder containing Ni0.2Zn0.2Fe2.6O4 magnetic nanoparticles: Batch and column studies. International Journal of Biological Macromolecules, 154, 937–953. https://doi.org/10.1016/j.ijbiomac.2020.03.131
  • 18. Jemli, S., Pinto, D., Kanhounnon, W. G., Ben Amara, F., Sellaoui, L., Bonilla-Petriciolet, A., Dhaouadi, F., Ameri, R., Silva, L.F.O., Bejar, S., Dotto, G.L. and Badawi, M. 2023. Green β-cyclodextrin nanosponges for the efficient adsorption of light rare earth elements: Cerium and lanthanum. Chemical Engineering Journal, 466, 143108. https://doi.org/10.1016/j.cej.2023.143108
  • 19. Khalil, M.M.H., Atrees, M.S., Abd El Fatah, A.I. L., Salem, H. and Roshdi, R. 2018. Synthesis and application studies of chitosan acryloylthiourea derivative for the separation of rare earth elements. Journal of Dispersion Science and Technology, 39(4), 605-613. 10.1080/01932691.2017.1370674
  • 20. Lagergren, S.K. 1898. About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingar, 24, 1–39.
  • 21. Lakić, M., Breijaert, T.C., Daniel, G., Svensson, F. G., Kessler, V.G. and Seisenbaeva, G.A. 2023. Uptake and separation of rare earth elements and late transition metal cations by nanoadsorbent grafted with diamino ligands. Separation and Purification Technology, 323, 124487. https://doi.org/10.1016/j.seppur.2023.124487
  • 22. Liu, Z., Chen, G., Li, X. and Lu, X. 2021. Removal of rare earth elements by MnFe2 O4 based mesoporous adsorbents: Synthesis, isotherms, kinetics, thermodynamics. Journal of Alloys and Compounds, 856, 158185. https://doi.org/10.1016/j.jallcom.2020.158185
  • 23. Martinez-Gomez, N.C., Vu, H.N. and Skovran, E. 2016. Lanthanide chemistry: From coordination in chemical complexes shaping our technology to coordination in enzymes shaping bacterial metabolism. Inorganic Chemistry, 55(20), 10083–10089. 10.1021/acs.inorgchem.6b00919
  • 24. Mohd Hussin, S., Al-Amrani, W.A., Mohd Suah, F.B., Harimu, L. and Hanafiah, M.A.K.M. 2024. Hydrogen peroxide treated desiccated coconut waste as a biosorbent in malachite green removal from aqueous solutions. Journal of Ecological Engineering, 25(3), 323–333. https://doi.org/10.12911/22998993/182870
  • 25. Ponou, J., Wang, L.P., Dodbiba, G., Okaya, K., Fujita, T., Mitsuhashi, K., Atarashi, T., Satoh, G. and Noda, M. 2014. Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. Journal of Environmental Chemical Engineering, 2(2), 1070– 1081. https://doi.org/10.1016/j.jece.2014.04.002
  • 26. Qiu, Y., Ding, K., Tang, L., Qin, Z., Li, M. and Yin, X. 2022. Water-recyclable chitosan-based ion-imprinted thermoresponsive hydrogel for rare earth metal ions accumulation. International Journal of Molecular Sciences, 23(18), 10542.
  • 27. Rahman, M.M., Awual, M.R. and Asiri, A.M. 2020. Preparation and evaluation of composite hybrid nanomaterials for rare-earth elements separation and recovery. Separation and Purification Technology, 253, 117515. https://doi.org/10.1016/j.seppur.2020.117515
  • 28. Roosen, J., Spooren, J. and Binnemans, K. 2014. Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths. Journal of Materials Chemistry A, 2, 19415. http://doi:10.1039/c4ta04518a
  • 29. Ryu, S., Fonseka, C., Naidu, G., Loganathan, P., Moon, H., Kandasamy, J. and Vigneswaran, S. 2021. Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL101 (Cr). Chemosphere, 281, 130869. https://doi.org/10.1016/j.chemosphere.2021.130869
  • 30. Salih, K.A.M., Hamza, M.F., Mira, H., Wei, Y., Gao, F., Atta, A.M., Fujita, T. and Guibal, E. 2021. Nd(III) and Gd(III) sorption on mesoporous aminefunctionalized polymer/SiO2 composite. Molecules, 26(4), 1049.
  • 31. Sastri, V.R., Perumareddi, J.R., Rao, V.R., Rayudu, G.V.S. and Bünzli, J.C. 2003. Modern aspects of rare earths and their complexes, Elsevier.
  • 32. Sun, Z., Chai, L., Liu, M., Shu, Y., Li, Q., Wang, Y. and Qiu, D. 2018. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization. Chemosphere, 195, 282–290.
  • 33. Sviridova, A.V., Maltseva, G.I. and Timofeev, K.L. 2022. Adsorption of metalions on aluminosilicates. Russian Journal of Physical Chemistry A, 96(12), 2737–2746. http://doi.10.1134/S0036024422120263
  • 34. Yan, L.K. and Feng, X.D. 2009. New development of concept of electronegativity Chinese Science Bulletin, 54(2), 328–334.
  • 35. Zhao, F., Yang, Z., Wei, Z., Spinney, R., Sillanpää, M., Tang, J., Tam, M. and Xiao, R. 2020. Polyethylenimine-modified chitosan materials for the recovery of La(III) from leachates of bauxite residue. Chemical Engineering Journal, 388, 124307. https://doi.org/10.1016/j.cej.2020.124307
  • 36. Zhou, J., Song, X., Shui, B. and Wang, S. 2021. Preparation of graphene oxide composites and assessment of their adsorption properties for Lanthanum (III). Coatings, 11, 1040. https://doi.org/10.3390/oatings11091040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4576868-82f7-43a4-a942-98ac23c7b120
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.