PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Periodical Morphodynamic Changes of Sand Movements at El Jadida Beach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
El Jadida Beach (X: -8.5007116; Y: 33.2316326) is a sandy beach of low altitude that constitutes a kind of enclave located between the port of El Jadida and rocky outcrops. It is influenced by natural and anthropic factors, as well as the impact of tourism, particularly during the summer, when sand is used for amusement activities (Beach Ball competition). In order to follow the morphodynamic changes of this beach, we carried out a study on two different time scales: a fifty-five years (1963 – 2018) shoreline evolution study using aerial photos and satellite images based on GIS tools using the Digital Shoreline Analysis System (DSAS) and a two-years (2017–2019) morphological beach study using a Differential Global Positioning System (DGPS). According to the results obtained by the diachronic study, the beach studied showed erosion in its middle and an accumulation at these bulges. This result is due to the presence of the harbor breakwater to the NW and the rocky outcrops to the SE; acting as a barrier preventing the movement of sediments and the erosion in the middle can be explained by the reduction of the sediment supply from the Oued Oum Erabia and by the exposure of this part to the dominant swells and also the human activities like used the beach for amusement activities (Beach Ball competition and other). Beach profile observations results show accumulation in the subaerial beach and erosion in the lower part of the foreshore. The study on two different time scales adopted in this paper, allowed us to understand longshore and cross-shore sedimentary mobility.
Słowa kluczowe
Twórcy
  • Laboratory of Marine Geosciences and Soil Sciences, CNRST Associated Unit (URAC 45), Earth Sciences Department, Chouaib Doukkali University, El Jadida, Morocco
  • Laboratory of Marine Geosciences and Soil Sciences, CNRST Associated Unit (URAC 45), Earth Sciences Department, Chouaib Doukkali University, El Jadida, Morocco
  • Laboratory of Marine Geosciences and Soil Sciences, CNRST Associated Unit (URAC 45), Earth Sciences Department, Chouaib Doukkali University, El Jadida, Morocco
autor
  • Earth Sciences Department, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
  • Laboratory of Marine Geosciences and Soil Sciences, CNRST Associated Unit (URAC 45), Earth Sciences Department, Chouaib Doukkali University, El Jadida, Morocco
Bibliografia
  • 1. Amores, A., Marcos, M. 2020. Ocean swells along the global coastlines and their climate projections for the twenty-first century. Journal of Climate, 33(1), 185–199. https://doi.org/10.1175/JCLI-D-19-0216.1
  • 2. Anders, F.J., Byrnes, M.R. 1991. Accuracy of Shoreline Change Rates as Determined from Maps and Aerial Photographs. Shore and Beach, 59, 17–26.
  • 3. Ariffin, E.H., Sedrati, M., Akhir, M.F., Norzilah, M.N.M., Yaacob, R., Husain, M.L. 2019. Short-term observations of beach Morphodynamics during seasonal monsoons: two examples from Kuala Terengganu coast (Malaysia). Journal of Coastal Conservation, 23(6), 985–994. https://doi.org/10.1007/s11852-019-00703-0
  • 4. Armenio, E., De Serio, F., Mossa, M., Petrillo, A.F. 2019. Coastline evolution based on statistical analysis and modeling. Natural Hazards and Earth System Sciences, 19(9), 1937–1953. https://doi.org/10.5194/nhess-19-1937-2019
  • 5. Fletcher, C., Rooney, J., Barbee, M., Lim, S.C., Richmond, B. 2003. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. Journal of Coastal Research, 106–124.
  • 6. Baig, M.R.I., Ahmad, I.A., Shahfahad, T.M., Rahman, A. 2020. Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4), 361–376. https://doi.org/10.1080/19475683.2020.1815839
  • 7. Chaibi, M. 2003. Dynamique sédimentaire et morphogenèse actuelle du littoral d’El Jadida (Maroc).
  • 8. Crowell, M., Leatherman, S.P., Buckley, M.K. 1991. Historical shoreline change: Error Analysis and Mapping Accuracy. Journal of Coastal Research, 7(3), 839–852.
  • 9. Dolan, R., Hayden, B.P., May, P., May, S. 1980. The reliability of shoreline change measurements from aerial photographs. Shore and Beach, 48, 22–29.
  • 10. El Khalidi, K., Bourhili, A., Bagdanavičiūtė, I., Minoubi, A., Hakkou, M., Zourarah, B., Maanan, M. 2022. Coastal land use and shoreline evolution along the Nador lagoon Coast in Morocco. Geocarto International, 37(25), 7445–7461. https://doi.org/10.1080/10106049.2021.1974958
  • 11. El Khalidi, K., Maanan, M., Hakkou, M., Nafouri, I., Zourarah, B. 2020. Influence of the margin of error related to the use of aerial photographs on the interpretation of the shoreline changes: evidence from three case studies from the Atlantic coast of Morocco. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(12), 457–467. https://doi.org/10.34218/IJARET.11.12.2020
  • 12. Faye, I.B.N. 2010. Dynamique du trait de côte sur les littoraux sableux de la Mauritanie à la Guinée-Bissau (Afrique de l’Ouest): Approches régionale et locale par photo-interprétation, traitement d’images et analyse de cartes anciennes, 1, 321.
  • 13. Gaillot, S., Chaverot, S. 2001. Méthode d’étude des littoraux à faible évolution. Cas du delta du Golo (Corse) et du littoral du Touquet (Pas de Calais) en France, Géomorphologie: Relief, Processus, Environnement, 7(1), 47–54. https://doi.org/10.3406/morfo.2001.1086
  • 14. Gaillot S., Piégay H. 1999. Impact of Gravel-Mining on Stream Channel and Coastal Sediment Supply: Example of the Calvi Bay in Corsica (France). Journal of Coastal Research, 15(3), 774–788.
  • 15. Hakkou, M., Maanan, M., Belrhaba, T., El Khalidi, K., El Ouai, D., Benmohammadi, A. 2018. Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast, Morocco. Ocean and Coastal Management, 163, 232–239. https://doi.org/10.1016/j.ocecoaman.2018.07.003
  • 16. Hemer, M.A., Katzfey, J., Trenham, C.E. 2013. Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modelling, 70, 221–245. https://doi.org/10.1016/j.ocemod.2012.09.008
  • 17. El Khalidi, K. 2007. Morphological and diachronic study of the lagoon of Sidi Moussa, Morocco. Terra et aqua, 106, 3.
  • 18. Lollino, P., Pagliarulo, R., Trizzino, R., Santaloia, F., Pisano, L., Zumpano, V., Perrotti, M., Fazio, N.L. 2021. Multi-scale approach to analyse the evolution of soft rock coastal cliffs and role of controlling factors: A case study in South-Eastern Italy. Geomatics, Natural Hazards and Risk, 12(1), 1058–1081. https://doi.org/10.1080/19475705.2021.1910351
  • 19. Moore, L.J. 2000. Shoreline mapping techniques. Journal of coastal research, 111–124.
  • 20. Menie Ovono, Z. 2010. Evolution de la flèche mandji de l’holocene a l’actuel. Analyse et cartographie du risque cotier. these de doctorat, Université de Nantes France, 298.
  • 21. Minoubi, A., El Khalidi, K., Chaibi, M.M., Zourarah, B., Poizot, E., Amrouni, O. 2013. Variation Morphosedimentary seasonal variation and the impact of the January 2009 storm on the coast of Safi, Morocco. Science Lib Editions Mersenne, 5(130202), 1–23.
  • 22. Minoubi, A., El Khalidi, K., Chaibi M., Zourarah, B., Ayt Ougougdal, M., Poizot, E,. Mear, Y. (2018). Impact des ouvrages portuaires sur l’évolution du trait de côte de la baie de Safi (littoral atlantique-Maroc). Revue Marocaine de Géomorphologie, 2, 18– 35.
  • 23. Moore, L.J. 2000. Shoreline mapping techniques. Journal of Coastal Research, 111–124.
  • 24. Moussaid, J., Fora, A.A., Zourarah, B., Maanan, M., Maanan, M. 2015. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. In Ocean Engineering, 102, 71–77. Elsevier Ltd. https://doi.org/10.1016/j.oceaneng.2015.04.044
  • 25. Salim, F.Z., El Habti, M.Y., Lech-Hab, K.B.H., El Arrim, A. 2021. A diachronic study of the Mediterranean coastline: A geometric approach. E3S Web of Conferences, 234. https://doi.org/10.1051/e3sconf/202123400039
  • 26. Sherman, D.J., Bauer, B.O. 1993. Dynamics of beach-dune systems. Progress in Physical Geography, 17(4), 413–447. https://doi.org/10.1177/030913339301700402
  • 27. Shoshany, M., Degani, A. 1992. Shoreline detection by digital image processing of aerial photography. Journal of Coastal Research, 29–34.
  • 28. Snoussi, M., Khalfaoui, O., Flayou, L., Kasmi, S., Raji, O. 2018. Can ICZM help the resilience of disappearing beaches in the face of climate change? In Advances in Science, Technology and Innovation. Springer Nature, 29–30. https://doi.org/10.1007/978-3-319-70548-4_11
  • 29. Tao, H.C., Hsu, T.W., Fan, C.M. 2022. Developments of Dynamic Shoreline Planform of Crenulate-Shaped Bay by a Novel Evolution Formulation. Water, 14(21), 3504. https://doi.org/10.3390/w14213504
  • 30. Wernette, P., Shortridge, A., Lusch, D.P., Arbogast, A.F. 2017. Accounting for positional uncertainty in historical shoreline change analysis without ground reference information.International Journal of Remote Sensing, 38(13), 3906–3922. https://doi.org/10.1080/01431161.2017.1303218
  • 31. Willis, C.M., Griggs, G.B. 2003. Reductions in fluvial sediment discharge by coastal dams in California and implications for beach sustainability. Journal of Geology, 111(2), 167–182. https://doi.org/10.1086/345922
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f452662b-0f84-4fc0-8d68-ef78b4146072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.