PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective separation of specularite and aegirite using chitosan as a novel depressant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a typical iron-bearing silicate gangue, aegirite often associates with specularite. Due to the iron element contained in aegirite, it has similar surface properties to specularite. Flotation is by far one of the most efficient methods of processing this kind of iron ore. But the traditional depressants unable to take action in the separation of specularite and aegirite. Chitosan was used as a novel depressant to attempt to separate specularite from aegirite through microflotation tests, adsorption tests, contact angle measurements, Zeta potential measurements, and XPS analysis. The flotation results indicate that chitosan show more strong depression effect on specularite than aegirite. Zeta potential measurements, contact angle measurements and adsorption tests demonstrate that chitosan is more inclined to adsorb on the specularite surface than aegirite, which hinders the subsequent adsorption of collector sodium oleate and increases difference in hydrophobicity between the two minerals. The XPS results of specularite validate the adsorption of chitosan on specularite, and illustrate that electrons of chitosan were partially transferred to oxygen and iron atoms in specularite during the adsorption process.
Rocznik
Strony
art. no. 151692
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • AL-DHUBAIBI, A. M., VAPUR, H., SONER, T. O. P., 2019. Effective processing of specularite ore by wet magnetic separation and reverse flotation techniques. Hittite Journal of Science and Engineering, 6(3), 201-208.
  • DESBRIères, J., GUIBAL, E., 2018. Chitosan for wastewater treatment. Polymer International, 67(1), 7-14.
  • FENG, B., PENG, J., GUO, W., ZHU, X., HUANG, W., 2018. The stimulus response of chitosan and its depression effect on talc flotation. Mineral Processing and Extractive Metallurgy, 127(1), 56-61.
  • FENG, B., PENG, J., GUO, W., ZHANG, W., AI, G., WANG, H., 2018. The effect of changes in pH on the depression of talc by chitosan and the associated mechanisms. Powder Technology, 325, 58-63.
  • HAO, H., LI, L., YUAN, Z., LIU, J., 2018. Comparative effects of sodium silicate and citric acid on the dispersion and flotation of carbonate-bearing iron ore. Journal of Molecular Liquids, 271, 16-23.
  • HAO, J., LIU, J., YANG, D., QIN, X., GAO, H., BAI, X., WEN, S., 2022. Application of a new depressant dithiocarbamate chitosan in separation of chalcopyrite and molybdenite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, 127920.
  • HUANG, G., ZHOU, C., LIU, J., 2012. Effects of different factors during the desilication of diaspore by direct flotation. International Journal of Mining Science and Technology, 22(3), 341-344.
  • HUANG, P., CAO, M., LIU, Q., 2012. Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 409, 167-175.
  • KURNIAWATI, H. A., ISMADJI, S., LIU, J. C., 2014. Microalgae harvesting by flotation using natural saponin and chitosan. Bioresource technology, 166, 429-434
  • LI, M., LIU, J., GAO, X., HU, Y., TONG, X., ZHAO, F., YUAN, Q., 2019. Surface properties and floatability comparison of aegirite and specularite by density functional theory study and experiment. Minerals, 9(12), 782.
  • LI, M., LIU, J., HU, Y., GAO, X., YUAN, Q., ZHAO, F., 2020. Investigation of the specularite/chlorite separation Rusing chitosan as a novel depressant by direct flotation. Carbohydrate polymers, 240, 116334.
  • LIU, J., EJTEMAEI, M., NGUYEN, A. V., WEN, S., ZENG, Y., 2020. Surface chemistry of Pb-activated sphalerite. Minerals Engineering, 145, 106058.
  • LIU, W., LIU, W., ZHAO, Q., PENG, X., WANG, B., ZHOU, S., ZHAO, L., 2020. Investigating the performance of a novel polyamine derivative for separation of quartz and hematite based on theoretical prediction and experiment. Separation and Purification Technology, 237, 116370.
  • LUO, X. M., YIN, W. Z., WANG, Y. F., SUN, C. Y., MA, Y. Q., LIU, J., 2016. Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite. Journal of Central South University, 23(1), 52-58.
  • NAKHAEI, F., IRANNAJAD, M., 2018. Reagents types in flotation of iron oxide minerals: A review. Mineral Processing and Extractive Metallurgy Review, 39(2), 89-124.
  • PEREIRA, A. R. M., HACHA, R. R., TOREM, M. L., MERMA, A. G., SILVAS, F. P., 2021. Direct hematite flotation from an iron ore tailing using an innovative biosurfactant. Separation Science and Technology, 1-11.
  • POPERECHNIKOVA, O. Y., FILIPPOV, L. O., SHUMSKAYA, E. N., FILIPPOVA, I. V., 2017. Intensification of the reverse cationic flotation of hematite ores with optimization of process and hydrodynamic parameters of flotation cell. Journal of Physics: Conference Series, 879(1), 012016.
  • QIAN, G., BO, F., DANPING, Z., JUJIE, G., 2017. Flotation separation of chalcopyrite from talc using carboxymethyl chitosan as depressant. Physicochemical Problems of Mineral Processing, 53(2), 1255-1263.
  • RINAUDO, M., 2006. Chitin and chitosan: Properties and applications. Polymer Science, 31(7), 603–632.
  • SHRIMALI, K., MILLER, J. D., 2016. Polysaccharide depressants for the reverse flotation of iron ore. Transactions of the Indian Institute of Metals, 69(1), 83-95.
  • VELOSO, C. H., FILIPPOV, L. O., FILIPPOVA, I. V., & ARAUJO, A. C., 2019. The effect of pH on the depression of iron oxides in the presence of complex gangue silicate minerals. IMPC 2018-29th International Mineral Processing Congress, 1718-1723.
  • VELOSO, C. H., FILIPPOV, L. O., FILIPPOVA, I. V., OUVRARD, S., ARAUJO, A. C., 2018. Investigation of the interaction mechanism of depressants in the reverse cationic flotation of complex iron ores. Minerals Engineering, 125, 133-139.
  • WANG, X., LIU, W., DUAN, H., LIU, W., SHEN, Y., GU, X., QIU, J., JIA, C., 2021. Potential application of an eco-friendly amine oxide collector in flotation separation of quartz from hematite. Separation and Purification Technology, 278, 119668.
  • WANG, Y., AHMED KHOSO, S., LUO, X., TIAN, M., 2019. Understanding the depression mechanism of citric acid In sodium oleate flotation of Ca2+-activated quartz: Experimental and DFT study. Minerals Engineering, 140, 105878.
  • XU, L., HU, Y., WU, H., TIAN, J., LIU, J., GAO, Z., WANG, L., 2016. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Separation and Purification Technology, 169, 33-42.
  • YAO, J., YIN, W., GONG, E., 2016. Depressing effect of fine hydrophilic particles on magnesite reverse flotation. International Journal of Mineral Processing, 149, 84-93.
  • ZHANG, C., LIU, C., FENG, Q., CHEN, Y., 2017. Utilization of N-carboxymethyl chitosan as selective depressants for serpentine on the flotation of pyrite. International Journal of Mineral Processing, 163, 45-47.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f451feb1-2794-4c93-9aba-9ef55d2467d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.