PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tris(8-hydroxyquinoline)aluminium in a polymer matrix as an active layer for green OLED applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tris(8-hydroxyquinoline)aluminium with poly(N-vinylcarbazole) (Alq₃:PVK) or polystyrene sulfonate (Alq₃:PSS) were deposited by spin-coating on glass and silicon substrates. SEM measurements show that relatively smooth thin films were obtained. Fourier transform infrared measurements were performed to confirm the composition of the samples. The optical properties of thin films containing Alq₃:PVK and Alq₃:PSS were characterised using absorption spectroscopy and spectroscopic ellipsometry. It was found that the absorption spectrum of Alq₃:PVK is characterised by four bands, while for Alq₃:PSS only three bands are visible. The photoluminescence of the studied thin layers shows a peak with a maximum at about 500 nm. Additionally, cyclic voltammetry of Alq₃ is also presented. Theoretical density functional theory calculations provide the insight into the interaction and nature of Alq₃:PVK and Alq₃:PSS excited states. Finally, the organic light-emitting diode (OLED) structure based on Alq₃:PVK was fabricated and showed strong electroluminescence with a green emission at 520 nm. The results of the device show that the ITO/PEDOT:PSS/Alq₃:PVK/Ca/Al system can be useful for the production of low-cost OLEDs with Alq₃:PVK as an active layer for future lighting applications.
Rocznik
Strony
art. no. e146105
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, Torun 87-100, Poland
  • Department of Physics, Cracow University of Technology, Podchorążych 1, 30-084 Krakow, Poland
  • Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun 87-100, Poland
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, Torun 87-100, Poland
  • Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Parco d’Orleans II, 90128 Palermo, Italy
  • Université de Lyon, INSA Lyon, ECL, CNRS, UCBL, CPE Lyon, INL, UMR5270, 69621 Villeurbanne, France
autor
  • State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
  • School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
autor
  • State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
  • School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
  • Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun 87-100, Poland
autor
  • Department of Physics, Cracow University of Technology, Podchorążych 1, 30-084 Krakow, Poland
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, Torun 87-100, Poland
Bibliografia
  • [1] Cho, C. P., Wu, C. A. & Perng, T. P. Crystallization of amorphous tris (8-hydroxyquinoline) aluminum nanoparticles and transformation to nanowires. Adv. Funct. Mater. 16, 819-823 (2006). https://doi.org/10.1002/adfm.200500631.
  • [2] Xie, G. et al. Highly efficient top-emitting white organic light-emitting diodes with improved contrast and reduced angular dependence for active matrix displays. Org. Electron. 11, 2055-2059 (2010). https://doi.org/10.1016/j.orgel.2010.10.001.
  • [3] Du, J. et al. Instability origin and improvement scheme of facial Alq3 for blue OLED application. Chem. Res. Chin. Univ. 32, 423-427 (2016). https://doi.org/10.1007/s40242-016-5485-z.
  • [4] Mitschke, U. & Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem. 10, 1471-1507 (2000). https://doi.org/10.1039/A908713C.
  • [5] Feast, W. J., Tsibouklis, J., Pouwer, K. L., Groenendaal, L. & Meijer, E. W. Synthesis, processing and material properties of conjugated polymers. Polymer 37, 5017-5047 (1996). https://doi.org/10.1016/0032-3861(96)00439-9.
  • [6] Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539-541 (1990). https://doi.org/10.1038/347539a0.
  • [7] Kirchmeyer, S. & Reuter, K. J. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077-2088 (2005). https://doi.org/10.1039/B417803N.
  • [8] Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076-1081 (2011). https://doi.org/10.1002/adfm.201002290.
  • [9] Takano, T., Masunaga, H., Fujiwara, A., Okuzaki, H. & Sasaki, T. PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45, 3859-865 (2012). https://doi.org/10.1021/ma300120g.
  • [10] Tian, Y. et al. High-performance transparent PEDOT: PSS/CNT films for OLEDs. Nanomaterials 11, 1-17 (2021). https://doi.org/10.3390/nano11082067.
  • [11] Jeltsch, K., Lupa, G. & Weitz, R. T. Materials depth distribution and degradation of a FIrpic based solution-processed blue OLED. Org. Electron. 26, 365-370 (2015). https://doi.org/10.1016/j.orgel.2015.08.003.
  • [12] Yu, S. Y., Chang, J. H., Wang, P. S., Wu, C. I. & Tao, Y. T. effect of ITO surface modification on the oled device lifetime. Langmuir 30, 7369-7376 (2014). https://doi.org/10.1021/la4049659.
  • [13] Shen, Z., Burrows, P. E., Bulović, V., Forrest, S. R. & Thompson, M. E. Three-color, tunable, organic light-emitting devices. Science 276, 2009-2011 (1997). https://doi.org/10.1126/science.276.5321.2009.
  • [14] Bi, H. et al. Fac-Alq3 and Mer-Alq3 nano/ microcrystals with different emission and chargetransporting properties. Adv. Mater. 22, 1631-1634 (2010). https://doi.org/10.1002/adma.200903094.
  • [15] Halls, M. D. & Schlegel, H. B. Molecular orbital study of the first excited state of the OLED material Tris(8-hydroxyquino-line)aluminum(III). Chem. Mater. 13, 2632-2640 (2001). https://doi.org/10.1021/cm010121d.
  • [16] Kato, T., Mori, T. & Mizutani, T. Effect of fabrication conditions on photoluminescence and absorption of hole transport materials. Thin Solid Films 393, 109-113 (2001). https://doi.org/10.1016/S0040-6090(01)01112-9.
  • [17] Lee, Y. H. et al. effect of deposition rate of organic layer on electrical and optical characteristics of OLEDs. Mol. Cryst. Liq. Cryst. 462, 143-148 (2007). https://doi.org/10.1080/07370650601013088.
  • [18] Zhang, D. et al. Highly efficient hybrid warm white organic light-emitting diodes using a blue thermally activated delayed fluores-cence emitter: exploiting the external heavy-atom effect. Light: Sci. Appl. 4, e232-1-e232-7 (2015). https://doi.org/10.1038/lsa.2015.5.
  • [19] Aziz, H., Popovic, Z. D., Hu, N. X., Hor, A. M. & Xu, G. Degradation mechanism of small molecule–based organic light-emitting devices. Science 283, 1900-1902 (1999). https://doi.org/10.1126/science.283.5409.1900.
  • [20] Prez-Bolvar, C., Takizawa, S., Nishimura, G., Montes, V. A. & Anzenbacher, P. High-efficiency Tris(8-hydroxyquinoline) aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting. Chem. Eur. J. 17, 9076-9082 (2011). https://doi.org/10.1002/chem.201100707.
  • [21] Zhang, Y., Hu, Y., Chen, J., Zhou, Q. & Ma, D. Charge carrier injection and transport in PVK:Alq3 blend films. J. Phys. D 36, 2006-2009 (2003). https://doi.org/10.1088/0022-3727/36/16/313.
  • [22] Fukushima, T. & Kaji, H. Green- and blue-emitting tris(8-hydroxy-quinoline) aluminum(III) (Alq3) crystalline polymorphs: Preparation and application to organic light-emitting diodes. Org. Electron. 13, 2985-2990 (2012). https://doi.org/10.1016/j.orgel.2012.08.036.
  • [23] Dalasiński, P., Łukasiak, Z., Wojdyła, M., Rębarz, M. & Bała, W. Study of optical properties of TRIS (8-hydroxyquinoline) aluminum (III). Opt. Mat. 28, 98-101 (2006). https://doi.org/10.1016/j.optmat.2004.10.031.
  • [24] Duan, L., Yang, H., Wang, G. & Duan, Y. Preparation of 8-hydroxy-quinoline aluminum nanomaterials to enhance properties for green organic light-emitting diode devices. J. Soc. Inf. Display 29, 466-475 (2021). https://doi.org/10.1002/jsid.986.
  • [25] Karbovnyk, I. et al. Optical properties of composite structure based on ZnO microneedles and Alq3 thin film. Opt. Quantum Electron. 53, 1-9 (2021). https://doi.org/10.1007/s11082-021-03292-1.
  • [26] Pope, M. & Swenberg, C. E. Electronic Processes In Organic Crystals And Polymers 2nd ed. (Oxford University Press, New York 1993).
  • [27] D’Almeida, K. et al. Carbazole-based electroluminescent devices obtained by vacuum evaporation. J. Appl. Polym. Scie. 82, 2042-2055 (2001). https://doi.org/10.1002/app.2050.
  • [28] D’Angelo, P. et al. Electrical transport properties characterization of PVK (poly N-vinylcarbazole) for electroluminescent devices applications. Solid-State Electron. 51, 123-129 (2007). https://doi.org/10.1016/j.sse.2006.11.008.
  • [29] Bießmann, L. et al. Monitoring the swelling behavior of PEDOT: PSS electrodes under high humidity conditions. ACS Appl. Mater. Inter-faces 10, 9865-9872 (2018). https://doi.org/10.1021/acsami.8b00446.
  • [30] Bießmann, L. et al. Highly conducting, transparent PEDOT:PSS polymer electrodes from post-treatment with weak and strong acids. Adv. Electron. Mater. 5, 1800654-1-1800654-10 (2019). https://doi.org/10.1002/aelm.201800654.
  • [31] Fehse, K. et al. Lifetime of organic light emitting diodes on polymer anodes. Appl. Phys. Lett. 93, 83303-1-83303-3 (2008). https://doi.org/10.1063/1.2975369.
  • [32] Derkowska-Zielinska, B. et al. Photovoltaic cells with various azo dyes as components of the active layer. Sol. Energy 203, 19-24 (2020). https://doi.org/10.1016/j.solener.2020.04.022.
  • [33] Gąsiorski, P. et al. Efficient green electroluminescence from 1,3-diphenyl-1H-pyrazolo[3,4-b] quinoxaline dyes in dye-doped polymer based electroluminescent devices. Dyes Pigm. 151, 380-384 (2018). https://doi.org/10.1016/j.dyepig.2018.01.002.
  • [34] Abdel-Wahab, F., Merazga, A., Rasheedy, M. S. & Montaser, A. A. Optical characterization of the annealing effect on Ge5Te20Se75 thin films by variable angle of-incidence spectroscopic ellipsometry. Optik 127, 3871-3877 (2016). https://doi.org/10.1016/j.ijleo.2016.01.064.
  • [35] Jeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 94, 1887-1930 (1994). https://doi.org/10.1021/cr00031a008.
  • [36] Hohenstein, E. G., Parrish, R. M., Sherrill, C. D., Turney, J. M. & Schaefer, H. F. Large-scale symmetry-adapted perturbation theory computations via density fitting and laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions. J. Chem. Phys. 135, 174017 (2011). https://doi.org/10.1063/1.3656681.
  • [37] Hohenstein, E. G. & Sherrill, C. D. Density fitting and cholesky decomposition approximations in symmetry-adapted perturbation theory: implementation and application to probe the nature of π–π interactions in linear acenes. J. Chem. Phys. 132, 184111 (2010). https://doi.org/10.1063/1.3426316.
  • [38] Garza, A. J. & Scuseria, G. E. Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 7, 4165-4170 (2016). https://doi.org/10.1021/acs.jpclett.6b01807.
  • [39] Frisch, M. J. et al. Gaussian 16, Revision B.01. (Gaussian, Inc., Wallingford, CT, 2016).
  • [40] Turney, J. M. et al. Psi4: An open-source ab initio electronic structure program. WIREs Comput. Mol. Sci. 2, 556 (2012). https://doi.org/10.1002/wcms.93.
  • [41] Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 084801 (2021). https://doi.org/10.1063/5.0055522.
  • [42] Head-Gordon, M., Grana, A. M., Maurice, D. & White, C. A. Analysis of electronic transitions as the difference of electron attachment and detachment densities. J. Chem. Phys. 99, 14261-14270 (1995). https://doi.org/10.1021/j100039a012.
  • [43] Plasser, F., Dreuw, A. & Krylov, A. libwfa: Wavefunction analysis tools for excited and open-shell electronic states. WIREs Comput. Mol. Sci. 12, e1595 (2022). https://doi.org/10.1002/wcms.1595.
  • [44] Masood, T. B. et al. Visual analysis of electronic densities and transitions in molecules, computer graphics forum. Anal. Sci. Eng. 40, 287-298 (2021). https://doi.org/10.1111/cgf.14307.
  • [45] Cuba, M. & Muralidharan, G. Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films. J. Lumin. 156, 1-7 (2014). https://doi.org/10.1016/j.jlumin.2014.07.008.
  • [46] Muhammad, F. F., Hapip, A. I. A. & Sulaiman, K. Study of optoelectronic energy bands and molecular energy levels of tris-(8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis. J. Organom. Chem. 695, 2526-2531 (2010). https://doi.org/10.1016/j.jorganchem.2010.07.026.
  • [47] Koay, J. Y., Sharif, K. A. M. & Rahman, S. A. Influence of film thickness on the structural, electrical and photoluminescence properties of vacuum deposited Alq3 thin films on c-silicon substrate. Thin Solid Films 517, 5298-5300 (2009). https://doi.org/10.1016/j.tsf.2009.03.145.
  • [48] Derkowska-Zielinska, B. Enhancement of third order nonlinear optical susceptibility of Alq3 in polar aprotic solvents. Opt. Lett. 42, 567-570 (2017). https://doi.org/10.1364/OL.42.000567.
  • [49] Sypniewska, M. et al. Optical and morphological properties of ZnO and Alq3 incorporated polymeric thin layers fabricated by the dip-coating method. Appl. Nanosci. 1-10 (2022). https://doi.org/10.1007/s13204-022-02647-8.
  • [50] Ravi Kishore, V. V. N. et al. On the assignment of the absorption bands in the optical spectrum of Alq3. Synth. Met. 126, 199-205 (2002). https://doi.org/10.1016/S0379-6779(01)00553-7.
  • [51] Řezáč, J., Riley, K. E. & Hobza, P. S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 7, 2427-2438 (2011). https://doi.org/10.1021/ct2002946.
  • [52] Cernini, R. et.al. Electrochemical and optical studies of PPV derivatives and poly(aromatic oxadiazoles). Synth. Met. 84, 359-360 (1997). https://doi.org/10.1016/S0379-6779(97)80781-3.
  • [53] Amati, M., Stoia, S. & Baerends, E. J. The electron affinity as the highest occupied anion orbital energy with a sufficiently accurate approximation of the exact Kohn-Sham potential. J. Chem. Theory Comput. 16, 443-452 (2020). https://doi.org/10.1021/acs.jctc.9b00981.
  • [54] Freitas, A. R. et al. Synthesis, structure, spectral and electrochemical properties of chromium(III) tris-(8-hydroxyquinolinate). Dalton Trans. 44, 11491-11503 (2015). https://doi.org/10.1039/C5DT00727E.
  • [55] Jiang, X., Liu , Y., Song, X. & Zhu, D. Organic light-emitting diodes made with poly(N-vinylcarbazole) and 8-hydroxyquinoline aluminium (Alq3). Synth. Met. 87, 175-178 (1997). https://doi.org/10.1016/S0379-6779(97)80104-X.
  • [56] Mu, H., Li, W., Jones, R., Steckl, A. & Klotzkin, D. A comparative study of electrode effects on the electrical and luminescent characteristics of Alq3/TPD OLED: Improvements due to conductive polymer (PEDOT) anode. J. Lumin. 126, 225-229 (2007). https://doi.org/10.1016/j.jlumin.2006.07.00.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f44baa24-0aaf-438c-b0fa-f07f695c809c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.