PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemiczna biologia syntetyczna

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chemical synthetic biology
Języki publikacji
PL
Abstrakty
EN
Synthetic biology, which in 2020 turned 20 years old, is a very dynamically developing field. Unlike traditional molecular and cellular biology, synthetic biology focuses on the design and construction of parts, devices and systems such as enzymes, genetic circuits, metabolic pathways, etc. that can be modeled and adapted to specific requirements, and assembly into integrated systems for solving specific problems. The basic assumption of synthetic biology is the application of engineering principles such as standardization and modularity. Synthetic biology is traditionally dominated by top-down approaches that incorporate or redesign well-characterized standard biological parts into cellular systems. In synthetic biology research there are also bottom-up approaches aiming to construct cell-like systems starting with molecular building blocks. This complementary approach is called "chemical synthetic biology." In this case the goal is to use unnatural chemicals to reproduce biological behavior. Under the bottom-up approach synthetic biology involves construction of so-called minimal cells or living cells from scratch and creating orthogonal biological systems based on biochemistry not found in nature. Bottom-up approaches complement the study of living cells, facilitate the definition of principles governing biological organization and identify new systems for biotechnological production. Examples of breakthrough achievements in chemical synthetic biology such as peptide nucleic acids and selected developments over the past few years are presented in this review article.
Rocznik
Strony
1413--1438
Opis fizyczny
Bibliogr. 114 poz., schem.
Twórcy
autor
  • Katedra Chemii, Uniwersytet Przyrodniczy we Wrocławiu, ul. C. K. Norwida 25, 50-375 Wrocław
Bibliografia
  • [1] S.A. Benner, Z. Yang, F. Chen, C.R .Chim., 2011, 14, 372.
  • [2] Nat. Biotechnol., 2009, 27, 1071.
  • [3] D. Endy, Nature, 2005, 438, 449.
  • [4] A. Arkin, Nat. Biotechnol., 2008, 26,771.
  • [5] M. Elowitz, S. Leibler, Nature, 2000, 403, 335.
  • [6] T.S. Gardner, C.R. Cantor, J.J. Collins, Nature, 2000, 403, 339.
  • [7] R. Kwok, Nature, 2010, 463, 288.
  • [8] A.A.K. Nielsen, B.S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E.A. Strychalski, D. Ross, D. Densmore, C.A. Voigt, Science, 2016, 352, aac7341.
  • [9] F.H. Arnold, Angew. Chem., 2018, 57, 4143.
  • [10] J. Doudna, E. Charpentier, Science, 2014, 346, 6213.
  • [11] F. Meng, T. Ellis, Nat. Commun., 2020, 11, 5174.
  • [12] C.A. Voigt, Nat. Commun., 2020, 11, 6379.
  • [13] P. Calero, P.I. Nikel, Microb. Biotechnol., 2019, 12, 98.
  • [14] K. Campbell, J. Xia, J. Nielsen, Trends. Biotechnol., 2017, 35, 1156.
  • [15] W. Sabra, C. Groeger, A.P. Zeng, Adv. Biochem. Eng. Biotechnol., 2016, 155, 165.
  • [16] T. Tiso, N. Wierckx, L.M. Blank, Industrial Biocatalysis, Boca Raton, FL: CRC Press, New York, 2014.
  • [17] S.H. Kung, S. Lund, M. Abhishek, D. McPhee, C.J. Paddon, Front. Plant Sci., 2018, 9, 87.
  • [18] A. Casini, F.Y. Chang, R. Eluere, A.M. King, E.M. Young, Q.M. Dudley, A. Karim, K. Pratt, C. Bristol, A. Forget, A. Ghodasara, R. Warden-Rothman, R. Gan, A. Cristofaro, A.E. Borujeni, M.H. Ryu, J. Li, Y.C. Kwon, H. Wang, E. Tatsis, C. Rodriguez-Lopez, S. O’Connor, M.H. Medema, M.A. Fischbach, M.C. Jewett, C. Voigt, D.B. Gordon, J. Am. Chem. Soc., 2018, 140, 4302.
  • [19] S.A. Benner, F. Chen, Z.Y. Yang, Chemical Synthetic Biology, Wiley, Chichester, 2011.
  • [20] M. Schmidt, Synthetic biology. The Technoscience and Its Societal Consequences, Springer, Berlin, 2010.
  • [21] M. Good, X. Trepat, Nature, 2018, 563, 188.
  • [22] P.L. Luisi, Chem. Biodivers., 2007, 4, 603.
  • [23] M. Schmidt, Bioessays, 2010, 32, 322.
  • [24] T. Carell, C. Brandmayr, A. Hienzsch, M. Müller, D. Pearson, V. Reiter, I. Thoma, P. Thumbs, M. Wagner, Angew. Chem., 2012, 51, 7110.
  • [25] D.A. Malyshev, K. Dhami, T. Lavergne, T. Chen, N. Dai, J. M. Foster, I. R. Correa Jr, F.E. Romesberg, Nature, 2014, 509, 385.
  • [26] D.H. Appella, Curr. Opin. Chem. Biol., 2009, 13, 687.
  • [27] W. Saenger, Principles of Nucleic Acid Chemistry, Springer, New York, 1984.
  • [28] N. Martin-Pintado, M. Yahyaee-Anzahaee, R. Campos-Olivas, A.M. Noronha, C.J. Wilds, M.J. Damha, C. Gonzalez, Nucleic Acids Res., 2012, 40, 9329.
  • [29] A. Matsugami, T. Ohyama, M. Inada, N. Inoue, N. Minakawa, A. Matsuda, M. Katahira, Nucleic Acids Res., 2008, 36, 1805.
  • [30] A. Eschenmoser, Science, 1999, 284, 2118.
  • [31] I. Anosova, E.A. Kowal, M.R. Dunn, J.C. Chaput, W.D. Van Horn, M. Egli, Nucleic Acids Res. 2016, 44, 1007.
  • [32] K.-U. Schçning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, A. Eschenmoser, Science, 2000, 290, 1347.
  • [33] A. Hendrix, H. Rosemeyer, I. Verheggen, A. Van Aerschot, F. Seela, P. Herdewijn, Chem. Eur. J., 1997, 3, 110.
  • [34] L.N. Jackson, N. Chim, C. Shi, J.C. Chaput, Nucleic Acids Res., 2019, 47, 6973.
  • [35] M.-O. Ebert, C. Mang, R. Krishnamurthy, A. Eschenmoser, B. Jaun, J. Am. Chem. Soc., 2008, 130, 15105.
  • [36] R. Krishnamurthy, S. Pitsch, M. Minton, C. Miculka, N. Windhab, A. Eschenmoser, Angew. Chem. Int. Ed. 1996, 35, 1537.
  • [37] A. Taylor, V. Pinheiro, M. Smola, A.S. Morgunov, S. Peak-Chew, C. Cozens, K.M. Weeks, P. Herdewijn, P. Holliger, Nature, 2015, 518, 427.
  • [38] C.A. Mattelaer, M. Maiti, L. Smets, M. Maiti, G. Schepers, H.P. Mattelaer, H. Rosemeyer, P. Herdewijn, E. Lescrinier, Chembiochem. 2021, 22, 1638.
  • [39] T. Carell, C. Brandmayr, A. Hienzsch, M. Muller, D. Pearson, V. Reiter, I. Thoma, P. Thumbs, M. Wagner, Angew. Chem., 2012, 51, 7110.
  • [40] M. Hocek, Acc. Chem. Res., 2019, 52, 1730.
  • [41] B.T. Le, M. Hornum, P.K. Sharma, P. Nielsen, R.N. Veedu, RSC Adv., 2017, 7, 54542.
  • [42] H. Peacock, A. Kannan, P. A. Beal, C. J. Burrows, J. Org. Chem., 2011, 76, 7295.
  • [43] M. Kimoto, I. Hirao, ACS Synth. Biol., 2017, 6, 1944.
  • [44] A.F. Fuchtbauer, M.S. Wranne, M. Bood, E. Weis, P. Pfeiffer, J.R. Nilsson, A. Dahlen, M. Grotli, L.M. Wilhelmsson, Nucleic Acids Res., 2019, 47, 9990.
  • [45] A. Simonova, I. Magrina, V. Sykorova, R. Pohl, M. Ortiz, L. Havran, M. Fojta, C.K. O’Sullivan and M. Hocek, Chem. – Eur. J., 2020, 26, 1286.
  • [46] Z.H. Qiu, L.H. Lu, X. Jian and C. He, J. Am. Chem. Soc., 2008, 130, 14398.
  • [47] Z. Vanikova, M. Janouskova, M. Kambova, L. Krasny, M. Hocek, Chem. Sci., 2019, 10, 3937.
  • [48] D.A. Malyshev, F.E. Romesberg, Angew. Chem., 2015, 54, 11930.
  • [49] L.Q. Zhang, Z.Y. Yang, K. Sefah, K.M. Bradley, S. Hoshika, M.J. Kim, H.J. Kim, G.Z. Zhu, E. Jimenez, S. Cansiz, I.T. Teng, C. Champanhac, C. McLendon, C. Liu,W. Zhang, D.L. Gerloff, Z. Huang, W.H. Tan, S.A. Benner, J. Am. Chem. Soc., 2015, 137, 6734.
  • [50] Z. Yang, A.M. Sismour, P. Sheng, N.L. Puskar, S.A. Benner. Nucleic Acids Res., 2007, 35, 4238.
  • [51] Z. Yang, A.M. Sismour, S.A. Benner, Nucleic Acids Res., 2007, 35, 3118.
  • [52] J.C. Delaney, J. Gao, H. Liu, N. Shrivastav, J.M. Essigmann, E.T. Kool, Angew. Chem., 2009, 48, 4524.
  • [53] M. Kimoto, R. Kawai, T. Mitsui, S. Yokoyama, I. Hirao. Nucleic Acids Res. 2009; 37:e14.
  • [54] Y.J. Seo, G.T. Hwang, P. Ordoukhanian, F.E. Romesberg, J. Am. Chem. Soc., 2009, 131, 3246.
  • [55] Y.J. Seo, S. Matsuda, F.E. Romesberg, J. Am. Chem. Soc., 2009, 131, 5046.
  • [56] I. Ivancova, R. Pohl, M. Hubalek, M. Hocek, Angew. Chem., 2019, 58, 13345.
  • [57] J. Micklefield, Curr. Med. Chem., 2001, 8, 1157.
  • [58] K.H. Jung, A. Marx, Cell. Mol. Life Sci., 2005, 62, 2080.
  • [59] F. Eckstein, Nucl. Acid Ther., 2014, 24, 374.
  • [60] N. Iwamoto, D.C.D. Butler, N. Svrzikapa, S. Mohapatra, I. Zlatev, D.W. Y. Sah, Meena, S.M. Standley, G.L. Lu, L.H. Apponi, M. Frank-Kamenetsky, J.J. Zhang, C. Vargeese, G.L. Verdine, Nat. Biotechnol., 2017, 35, 845.
  • [61] M.A. Islam, A. Fujisaka, J. Kawakami, T. Yamaguchi, S. Obika, Bioorg. Med. Chem. Lett., 2020, 30, 4.
  • [62] T. Ueda, H. Tohda, N. Chikazumi, F. Eckstein, K. Watanabe, Nucleic Acids Res., 1991, 19, 547.
  • [63] L. Wang, S. Chen, T. Xu, K. Taghizadeh, J.S. Wishnok, X. Zhou, D. You, Z. Deng, P.C. Dedon, Nat. Chem. Biol., 2007, 3, 709.
  • [64] B.R. Shaw, M. Dobrikov, X. Wang, J. Wan, K. He, J. L. Lin, P. Li, V. Rait, Z.A. Sergueeva, D. Sergueev, Ann. N. Y. Acad. Sci., 2003, 1002, 12
  • [65] M. Renders, G. Emmerechts, J. Rozenski, M. Krecmerova, A. Holy, P. Herdewijn, Angew. Chem., 2007, 46, 2501.
  • [66] A. Loakes, P. Holliger, Chem Commun (Camb), 2009, 31, 4619.
  • [67] J.F. Chen, Y.R. Baker, A. Brown, A.H. El-Sagheer, T. Brown, Chem. Sci., 2018, 9, 8110.
  • [68] L. Taemaitree, A. Shivalingam, A.H. El-Sagheer, T. Brown,Nat. Commun., 2019, 10, 1610.
  • [69] S.L. Miller, J.P. Dworkin, A. Lazcano, J. Theor. Biol., 2003, 222, 127.
  • [70] E.K. Nelson, M. Levy, S.L. Miller, PNAS, 2000, 97, 3868.
  • [71] P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Science, 1991, 254, 1497.
  • [72] Y. Ura, J.M. Beierle, L.J. Leman, L.E. Orgel, M.R. Ghadiri, Science, 2009, 325, 73.
  • [73] M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S.M. Freier, D.A. Driver, R.H. Berg, S.K. Kim, B. Norden, P.E. Nielsen, Nature, 1993, 365, 566.
  • [74] Y. Ura, J.M. Beierle, L.J. Leman, L.E. Orgel, M.R. Ghadiri, Science, 2009, 325, 73.
  • [75] M. Suchy, R.H.E. Hudson, J. Org. Chem., 2014, 79, 3336.
  • [76] B. Jash, J. Mueller, Angew. Chem., 2018, 57, 9524.
  • [77] K. Murayama, Y. Yamano, H. Asanuma, J. Am. Chem. Soc., 2019, 141, 9485.
  • [78] N. Budisa, Curr. Org. Chem., 2014, 18, 936.
  • [79] G. Srinivasan, C.M. James, J.A. Krzycki, Science, 2002, 296, 1459.
  • [80] A. Böck, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, F. Zinoni, Mol. Microbiol., 1991, 5, 515.
  • [81] M.J. Schmidt, D. Summerer, Front. Chem., 2014, 2, 7.
  • [82] O. Vargas-Rodriguez, A. Sevostyanova, D. Söll, A. Crnković, Curr. Opin. Chem. Biol. 2018, 46, 115.
  • [83] M.G. Hoesl, S. Oehm, P. Durkin, E. Darmon, L. Peil, H.R. Aern, J. Rappsilber, J. Rinehart, D. Leach, D. Söll, N. Budisa, Angew. Chem., 2015, 54, 10030.
  • [84] A. Kuthning, P. Durkin, S. Oehm, M.G. Hoesl, N. Budisa, R.D. Süssmuth, Sci. Rep., 2016, 6, 33447.
  • [85] H.R. Karbalaei-Heidari, N. Budisa, Front. Microbiol., 2020, 11, 590522.
  • [86] T. Vornholt, M. Jeschek, ChemBioChem. 2020, 21, 2241-2249.
  • [87] U.T. Bornscheuer, Philos. Trans. R. Soc. London, 2018, 376, 20170063.
  • [88] C.C. Liu, P.G. Schultz, Annu. Rev. Biochem., 2010, 79, 413.
  • [89] I. Drienovská, C. Mayer, C. Dulson, G. Roelfes, Nat. Chem., 2018, 10, 946.
  • [90] A. Mayer, C. Dulson, E. Reddem, A.M.W.H. Thunnissen, G. Roelfes, Angew. Chem., 2019, 58, 2083.
  • [91] V. Vaissier Welborn, T. Head-Gordon, Chem. Rev., 2019, 119, 6613.
  • [92] A.E. Donnelly, G.S. Murphy, K.M. Digianantonio, M.H. Hecht, Nat. Chem. Biol. 2018, 14, 253.
  • [93] R. Stenner, J.W. Steventon, A. Seddon, J.L.R. Anderson, Proc. Natl. Acad. Sci. USA 2020, 117, 141.
  • [94] D.J. Mandell, M.J. Lajoie, M.T. Mee, R. Takeuchi, G. Kuznetsov, J.E. Norville, C.J. Gregg, B.L. Stoddard, G.M. Church, Nature, 2015, 518, 55.
  • [95] J.W. Szostak, D.P. Bartel, P.L. Luisi, Nature, 2001, 409, 387.
  • [96] C. Forster, G.M. Church, Mol. Syst. Biol. 2006, 2, 45.
  • [97] V. Noireaux, A.P. Liu, Annu. Rev. Biomed. Eng. 2020, 22, 51.
  • [98] M. Exterkate, A.J.M. Driessen, ACS Omega, 2019, 4, 5293.
  • [99] C.A. Hutchison, R.Y. Chuang, V.N. Noskov, N. Assad-Garcia, T.J. Deerinck, M.H. Ellisman, J. Gill, K. Kannan, B.J. Karas, L. Ma, J.F. Pelletier, Z.Q. Qi, R.A. Richter, E.A Strychalski, L. Sun, Y. Suzuki, B. Tsvetanova, K.S. Wise, H.O. Smith, J.I. Glass, C. Merryman, D.G. Gibson, J.C. Venter, Science, 2016, 351:aad6253.
  • [100] D.G. Gibson, J.I. Glass, C. Lartigue, V.N. Noskov, R.-Y. Chuang, M.A. Algire, G.A. Benders, M.G. Montague, L. Ma, M.M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E.A. Denisova, L. Young, Z.-Q. Qi, T.H. Segall-Shapiro, C.H. Calvey, P.P. Parmar, C.A. Hutchison, H.O. Smith, J.C. Venter, Science, 2010, 329, 52–56.
  • [101] J.F. Pelletier, L. Sun, K.S. Wise, N. Assad-Garcia, B.J. Karas, T.J. Deerinck, M.H. Ellisman, A. Mershin, N. Gershenfeld, R.-Y. Chuang, J.I. Glass, E.A. Strychalski, Cell, 2021, 184, 2430.
  • [102] M. Breuer, T.M. Earnest, C. Merryman, K.S. Wise, L. Sun, M.R. Lynott, C.A. Hutchison, H.O. Smith, J.D. Lapek, D.J. Gonzalez, V. de Crécy-Lagard, D. Haas, A.D. Hanson, P. Labhsetwar, J.I. Glass, Z. Luthey-Schulten, eLife, 2019, 8, e36842.
  • [103] L. Aufinger, F.C. Simmel, Angew. Chem., 2018, 57, 17245.
  • [104] K. Vogele, T. Frank, L. Gasser, M.A. Goetzfried, M.W. Hackl, S.A. Sieber, F.C. Simmel, T. Pirzer, Nat. Commun., 2018, 9, 3862.
  • [105] K. Libicher, R. Hornberger, M. Heymann, H. Mutschler, Nat. Commun., 2020, 11, 904.
  • [106] M. Suetsugu, H. Takada, T. Katayama, H. Tsujimoto, Nucleic Acids Res., 2017, 45, 11525.
  • [107] T.E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. McLean, T. Chotel, P. Claus, N.S. Cortina, J.C. Baret, Science, 2020, 368, 649.
  • [108] S. Berhanu, T. Ueda, Y. Kuruma, Nat. Commun., 2019, 10, 1325.
  • [109] C. Fanalista, A. Birnie, R. Maan, F. Burla, K. Charles, G. Pawlik, S. Deshpande, G.H. Koenderink, M. Dogterom, C. Dekker, ACS Nano, 2019, 13, 5439.
  • [110] X. Cheng, J.E. Ferrell, Science, 2019, 366, 631.
  • [111] H. Niederholtmeyer, C. Chaggan, N.K. Devaraj, Nat. Commun., 2018, 9, 1.
  • [112] N.Y. Kostina, K. Rahimi, Q. Xiao, T. Haraszti, S. Dedisch, J.P. Spatz, U. Schwaneberg, M.L. Klein, V. Percec, M. Möller, C. Rodriguez-Emmenegger, Nano Lett., 2019, 19, 5732.
  • [113] Y. Tu, F. Peng, X. Sui, Y. Men, P.B. White, J.C. M Hest,. D.A. Wilson, Nat. Chem. 2017, 9, 480.
  • [114] R.A. Tromans, T.S. Carter, L. Chabanne, M.P. Crump, H. Li, J.V. Matlock, M.G. Orchard, A.P. Davis, Nature Chem., 2019, 11, 52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f44ad508-661c-4f2e-9d4d-9ced332350c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.