Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It has been reported that the use of Class F fly ash with high iron content can reduce compressive strength when used to produce geopolymer concrete. This limitation has constrained the utilization of iron-rich fly ash in the production of geopolymeric materials. To provide increased clarity, this study investigates the compressive strength and microstructural development of iron-rich fly ash geopolymer mortar employing a range of sodium hydroxide/sodium silicate activator ratios. The study assesses Na2O dosage of 7.5, 10 and 15% with an alkali modulus (AM) ranging from 1.00 to 1.875 and identifies optimum performance using Analysis of Variance and Signal to Noise techniques. A Na2O dosage of 10% and AM 1.375 gave the optimum strength at 7, 28 and 90-days. This gave a compressive strength of 44.9 MPa (28-days) and 53.5 MPa (90-days). For the optimum mix design, reduction in strength was evident with high iron incorporation into the geopolymer matrix. A higher Na2O dosage resulted in increased dissolution and a decrease in average pore size, but an increase in total porosity. Moreover, a higher concentration of Na2O also correlated with increased carbonate products, in the form of carbonation and efflorescence. In addition, specimens synthesized with a higher concentration of Na2O dosage indicated a potential for high thermal durability.
Czasopismo
Rocznik
Tom
Strony
art. no. e181, 2022
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
autor
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne, Australia
autor
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne, Australia
autor
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne, Australia
autor
- Civil Engineering, Universitas Negeri Surabaya, Kampus UNESA Ketintang, Surabaya 60231, Indonesia
Bibliografia
- [1] Sarabanu J, Kumutha R, Vijai K. A Review on durability studies of geopolymer concrete and mortar under aggressive environment. Int J Civ Eng. 2017. https://doi.org/10.14445/23488352/IJCE-V4I5P108.
- [2] Alehyen S, Zerzouri M, Elalouani M, Achouri MEL, Taibi M. Porosity and fire resistance of fly ash based geopolymer. J Mater Environ Sci. 2017;8(10):3676–89.
- [3] Salas DA, Ramirez AD, Ulloa N, Baykara H, Boero AJ. Life cycle assessment of geopolymer concrete. Constr Build Mater. 2018;190:170–7.
- [4] Yang KH, Song JK, Song KI. Assessment of CO 2 reduction of alkali-activated concrete. J Clean Prod. 2013;39:265–72.
- [5] Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A. 2—An overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P, editors. Handbook of alkali-activated cements, mortars and concretes. Oxford: Woodhead Publishing; 2015. p. 19–47.
- [6] Widyarsana MW, Tambunan SA, Mulyadi AA. Identification of fly ash and bottom ash (FABA) hazardous waste generation from the industrial sector and its reduction management in Indonesia. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-307109/v1.
- [7] Irlan AO, Kurniawati G, Sofyan M. Tinjauan karakteristik bahan penyusun beton berpori dengan penggunaan fly ash dan super-plasticizer untuk perkerasan jalan ramah lingkungan. Kilat. 2020. https://doi.org/10.33322/kilat.v9i2.954.
- [8] Ke X, Li D, Zhang M, Jeon CH, Cai R, Cai J, Lyu J, Yang H. Ash formation characteristics of two Indonesian coals and the change of ash properties with particle size. Fuel Process Technol. 2019. https://doi.org/10.1016/j.fuproc.2018.12.020.
- [9] Kumar S, Yankwa Djobo JN, Kumar A, Kumar S. Geopolymerization behavior of fine iron-rich fraction of brown fly ash. J Build Eng. 2016;8:172–8.
- [10] Davidovits J, Davidovits R. Ferro-sialate Geopolymers (–Fe–O–Si–O–Al–O–). Technical papers #27, Geopolymer Institute Library. 2020. www.geopolymer.org. https://doi.org/10.13140/RG.2.2.25792.89608/2.
- [11] Leong HY, Ong DEL, Sanjayan JG, Nazari A. The effect of different Na 2 O and K 2 O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr Build Mater. 2016;106:500–11.
- [12] Chi M. Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars. Constr Build Mater. 2015;99:128–36.
- [13] Gunasekara C, Law DW, Setunge S, Sanjayan JG. Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Constr Build Mater. 2015;95:592–9.
- [14] Hanjitsuwan S, Hunpratub S, Thongbai P, Maensiri S, Sata V, Chindaprasirt P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem Concr Compos. 2014;45:9–14.
- [15] Fernández-Jimenez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG. Quantitative determination of phases in the alkali activation of fly ash Part I Potential ash reactivity. Fuel. 2006;85(5):625–34.
- [16] Gunasekara C. Influence of properties of fly ash from different sources on the mix design and performance of geopolymer concrete. Doctoral dissertation RMIT University. 2016. https://resea rchre posit ory. rmit. edu. au/ esplo ro/ outpu ts/ docto ral/ Influence-of-properties-of-fly-ash/9921863772001341#file-0.
- [17] Ahmad S, Alghamdi SA. A statistical approach to optimizing concrete mixture design. Sci World J. 2014. https://doi.org/10.1155/2014/561539.
- [18] Gong W, Wang N, Zhang N, Han W, Qiao H. Water resistance and a comprehensive evaluation model of magnesium oxychloride cement concrete based on Taguchi and entropy weight method. Constr Build Mater. 2020. https:// doi. org/ 10. 1016/j.conbuildmat.2020.119817.
- [19] Yamchelou MT, Law D, Brkljača R, Gunasekara C, Li J, Patnaikuni I. Geopolymer synthesis using low-grade clays. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.121066.
- [20] Al Bawab A, Friberg S, Sjöblom J, Farrington G. Sol/gel glass with ferric nitrate hydrate temperature dependence transition II) high concentration of iron in the glass. J Dispers Sci Technol. 1998;19:613–36.
- [21] Zhang Z, Wang H, Provis JL. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J Sustain Cem-Based Mater. 2012;1(4):154–66.
- [22] Ramos Guivar JA, Sadrollahi E, Menzel D, Ramos Fernandes EG, López EO, Torres MM, Arsuaga JM, Arencibia A, Litterst FJ. Magnetic, structural and surface properties of functionalized maghemite nanoparticles for copper and lead adsorption. RSC Adv. 2017;7(46):28763–79.
- [23] Li YS, Church JS, Woodhead AL. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater. 2012;324(8):1543–50.
- [24] Mozgawa W, Król M, Dyczek J, Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;132:889–94.
- [25] Hamdi N, Ben Messaoud I, Srasra E. Production of geopolymer binders using clay minerals and industrial wastes. C R Chim. 2019;22(2):220–6.
- [26] Singh BK, Nema P. Characterization of various flyash fractions for adsorption processes. Res J Mater Sci. 2015;3(3):7–16.
- [27] Madejová J, Komadel P. Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner. 2001;49(5):410–32.
- [28] Kledyński Z, Machowska A, Pacewska B, Wilińska I. Investigation of hydration products of fly ash–slag pastes. J Therm Anal Calorim. 2017;130(1):351–63.
- [29] Allahverdi A, Najafi Kani E, Shaverdi B. Carbonation versus efflorescence in alkali-activated blast-furnace slag in relation with chemical composition of activator. Int J Civ Eng. 2017;15(4):565–73.
- [30] Liu Y, Zeng F, Sun B, Jia P, Graham IT. Structural characterizations of aluminosilicates in two types of fly ash samples from Shanxi Province, North China. Minerals (Basel). 2019. https://doi.org/10.3390/min9060358.
- [31] Chen K, Lin WT, Liu W. Effect of NaOH concentration on properties and microstructure of a novel reactive ultra-fine fly ash geopolymer. Adv Powder Technol. 2021;32(8):2929–39.
- [32] Delineau T, Allard T, Muller JP, Odile B, Yvon J, Cases JM. FTIR reflectance vs EPR studies of structural iron in kaolinites. Clays Clay Miner. 1994;42:308–20.
- [33] Hamoudi A, Khouchaf L, Depecker C, Revel B, Montagne L, Cordier P. Microstructural evolution of amorphous silica following alkali–silica reaction. J Non Cryst Solids. 2008;354(45):5074–8.
- [34] Fauzi A, Nuruddin MF, Malkawi AB, Abdullah MMAB. Study of fly ash characterization as a cementitious material. Procedia Eng. 2016;148:487–93.
- [35] Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp. 2007;292(1):8–20.
- [36] Nuruddin MF, Malkawi AB, Fauzi A, Mohammed BS, Al-Mattarneh HM. Effects of alkaline solution on the microstructure of HCFA geopolymers. In: Proceedings of the 3rd International Conference on Civil, Offshore and Environmental Engineering, Malaysia. 2016. p. 501–506.
- [37] Yuan B, Yu QL, Brouwers HJH. Assessing the chemical involvement of limestone powder in sodium carbonate activated slag. Mater Struct. 2017. https://doi.org/10.1617/s11527-017-1003-0.
- [38] Zhang H, Li L, Long T, Sarker P, Shi X, Cai G, Wang Q. The effect of ordinary portland cement substitution on the thermal stability of geopolymer concrete. Materials (Basel). 2019. https://doi.org/10.3390/ma12162501.
- [39] Yamazaki Y, Kim J, Kadoya K, Hama Y. Physical and chemical relationships in accelerated carbonation conditions of alkaliactivated cement based on type of binder and alkali activator. Polymers (Basel). 2021. https://doi.org/10.3390/polym13040671.
- [40] Lemougna PN, MacKenzie KJD, Jameson GNL, Rahier H, Chinje Melo UF. The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. J Mater Sci. 2013;48(15):5280–6.
- [41] Peys A, White CE, Rahier H, Blanpain B, Pontikes Y. Alkali-activation of CaO-FeOx-SiO2 slag: formation mechanism from in-situ X-ray total scattering. Cement Concrete Res. 2019;122:179–88.
- [42] Ryu GS, Lee YB, Koh KT, Chung YS. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater. 2013;47:409–18.
- [43] Farooq F, Jin X, Faisal Javed M, Akbar A, Izhar Shah M, Aslam F, Alyousef R. Geopolymer concrete as sustainable material: a state of the art review. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124762.
- [44] Gomes K, Torres S, de Barros S, Vasconcelos I, Barbosa N. Iron distribution in geopolymer with ferromagnetic rich precursor. Mater Sci Forum. 2009. https://doi.org/10.4028/www.scientific.net/MSF.643.131.
- [45] Gomes K, Torres S, De Barros S, Vasconcelos I, Barbosa N. Mechanical properties of geopolymers with iron rich precursors. In: Conference Paper. 2011.
- [46] Zhang Z, Provis JL, Reid A, Wang H. Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cem Concr Res. 2014;64:30–4.
- [47] Ma Y, Hu J, Ye G. The pore structure and permeability of alkali activated fly ash. Fuel. 2013;104:771–80.
- [48] Park SS, Kang HY. Strength and microscopic characteristics of alkali-activated fly ash-cement. Korean J Chem Eng. 2006;23(3):367–73.
- [49] Dudek M, Sitarz M. Analysis of changes in the microstructure of geopolymer mortar after exposure to high temperatures. Materials (Basel). 2020. https://doi.org/10.3390/ma13194263.
- [50] Barbosa VFF, Mackenzie K, Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater. 2000;2:309–17.
- [51] Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen AR, Duxson P, van Deventer JSJ. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res. 2013;53:127–44.
- [52] Khan M, Castel A, Noushini A. Carbonation of a low-calcium fly ash geopolymer concrete. Mag Concr Res. 2016;69:1–11.
- [53] Lv XS, Qin Y, Lin ZX, Tian ZK, Cui XM. Inhibition of efflorescence in Na-based geopolymer inorganic coating. ACS Omega. 2020;5(24):14822–30.
- [54] Temuujin J, van Riessen A. Effect of fly ash preliminary calcination on the properties of geopolymer. J Hazard Mater. 2009;164(2):634–9.
- [55] Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovská L, Vinšová L. Aluminosilicate polymers—influence of elevated temperatures, efflorescence. Ceramics-Silikáty. 2009;53(4):276–82.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f44a468e-8571-4b66-8996-728b69855470