PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

DeepCwind semi-submersible floating offshore wind turbine platform with a nonlinear multi-segment catenary mooring line and intermediate buoy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, to improve the mechanical behavior of DeepCwind semi-submersible floating offshore wind turbine (FOWT) platform mooring lines, the nonlinear catenary cables of the platform were divided into multi-segment and intermediate buoys. Mathematical formulations of the boundary element method (BEM) governing the dynamics of mooring line systems with buoy devices were described. This study was applied to the OC4-DeepCwind semi-submersible FOWT platform, which is designed for a 200-meter water depth with mooring lines consisting of three catenary steel chain cables at 120° angles to each other. The dynamic response of the multi-segment catenary mooring lines with different buoy radiuses and different positions along the cables was investigated. The full-scale platform was modeled in ANSYS-AQWA software, and the simulations were performed under harsh offshore conditions. The mooring line’s general arrangement, tension, strain and uplift force for different buoy radiuses and their position along the cable are presented and discussed. Moreover, platform motions in three directions (surge, heave, and pitch) were also analyzed. It was concluded that by correctly selecting the buoy volume and position along the cable, the tension of the cable may be reduced by up to 45%. By incorrectly selecting the buoy, the results caused adverse effects.
Rocznik
Strony
20--34
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Tehran, Iran, Department of Civil and Environmental Engineering
  • Amirkabir University of Technology, Tehran, Iran, Department of Maritime Engineering
  • Morgan State University, Department of Civil Engineering, Baltimore, USA
Bibliografia
  • 1. Azcona, J., Munduate, X., González, L. & Nygaard, T. (2016) Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean Engineering 129, pp. 415–427, doi: 10.1016/j. oceaneng.2016.10.051.
  • 2. Bae, Y.H., Kim, M.H. & Kim, H.-C. (2017) Performance changes of a floating offshore wind turbine with broken mooring line. Renewable Energy 101, pp. 364–375.
  • 3. Brown, D.T. & Mavrakos, S. (1999) Comparative study on mooring line dynamic loading. Marine Structures 12 (3), pp. 131–151, doi: 10.1016/S0951-8339(99)00011-8.
  • 4. Cook, R.D. & Young, W.C. (1999) Advanced Mechanics of materials. Second Edition. New Jersey: Prentice Hall.
  • 5. Coulling, A.J., Goupee, A., Robertson, A., Jonkman, J.M. & Dagher, H.J. (2013) Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Journal of Renewable and Sustainable Energy 5(2), p. 023116, doi: 10.1063/1.4796197.
  • 6. Dessi, D., Carcaterra, A. & Diodati, G. (2004) Experimental investigation versus numerical simulation of the dynamic response of a moored floating structure to waves. Journal of Engineering for the Maritime Environment 218 (3), pp. 153–165, doi: 10.1243/1475090041737949.
  • 7. Gao, Z. & Moan, T. (2009) Mooring system analysis of multiple wave energy converters in a farm configuration. Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden.
  • 8. Ghafari, H. & Dardel, M. (2018) Parametric study of catenary mooring system on the dynamic response of the semi-submersible platform. Ocean Engineering 153, pp. 319–332, doi: 10.1016/j.oceaneng.2018.01.093.
  • 9. Goupee, A.J., Fowler, M.J., Kimball, R.W., Helder, J. & de Ridder, E.-J. (2014) Additional Wind/Wave basin testing of the DeepCwind semi-submersible with a performance-matched wind turbine. Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, 8–13 June, 2014, San Francisco, California, USA.
  • 10. Hall, M. & Goupee, A. (2015) Validation of a lumpedmass mooring line model with DeepCwind semisubmersible model test data. Ocean Engineering 104, pp. 590–603, doi: 10.1016/j.oceaneng.2015.05.035.
  • 11. Imani, H., Abbaspour, M., Tabeshpour, M.R. & Karimirad, M. (2020) Effects of motion and structural vibration–induced loadings on the coupled dynamic response of a mono-column tension-leg-platform floating wind turbine. Journal of Engineering for the Maritime Environment 234, 2, pp. 426–445, doi: 10.1177/1475090219882604.
  • 12. Karimi, M., Buckham, B. & Crawford, C. (2019) A fully coupled frequency domain model for floating offshore wind turbines. Journal of Ocean Engineering and Marine Energy 5 (2), pp. 135–158, doi: 10.1007/s40722-019-00134-x.
  • 13. Kwan, C.T. & Bruen, F.J. (1991) Mooring line dynamics: comparison of time domain, frequency domain, and quasi-static analyses. Paper presented at the Offshore Technology Conference, Houston, Texas, 6–9 May, 1991, doi: 10.4043/6657-MS.
  • 14. Lee, K.-H., Han, H.-S. & Park, S. (2015) Failure analysis of naval vessel’s mooring system and suggestion of reducing mooring line tension under ocean wave excitation. Engineering Failure Analysis 57, pp. 296–309.
  • 15. Liu, Z., Fan, Y., Wang, W. & Qian, G. (2019) Numerical Study of a Proposed Semi-Submersible Floating Platform with Different Numbers of Offset Columns Based on the DeepCwind Prototype for Improving the Wave-Resistance Ability. Applied Sciences 9(6), 1255.
  • 16. Martinez Perez, I., Constantinescu, A., Bastid, P., Zhang, Y.-H. & Venugopal, V. (2019) Computational fatigue assessment of mooring chains under tension loading. Engineering Failure Analysis 106, 104043, doi: 10.1016/j. engfailanal.2019.06.073.
  • 17. Masciola, M., Robertson, A., Jonkman, J., Coulling, A.J. & Goupee, A. (2013) Assessment of the importance of mooring dynamics on the global response of the DeepCwind floating semisubmersible offshore wind turbine. Proceedings of the 23rd International Offshore and Polar Engineering Conference, Anchorage, Alaska, USA, June 30–July 5, 2013, pp. 359–368.
  • 18. Motallebi, M., Ghafari, H., Ghassemi, H. & Shokouhian, M. (2020) Calculating the second-order hydrodynamic force on fixed and floating tandem cylinders. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 62(134), pp. 108–115, doi: 10.17402/425.
  • 19. Qiao, D., Yan, J. & Ou, J. (2014) Effects of mooring line with buoys system on the global responses of a semi-submersible platform. Brodogradnja 65 (1), pp. 79–96.
  • 20. Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A. & Luan, C. (2014) Definition of the Semisubmersible Floating System for Phase II of OC4. Technical Report, NREL/TP-5000-60601, National Renewable Energy Laboratory, U.S. Department of Energy. Available from: https://www.nrel.gov/docs/fy14osti/60601.pdf.
  • 21. Sabziyan, H., Ghassemi, H., Azarsina, F. & Kazemi, S. (2014) Effect of Mooring Lines Pattern in a Semi-submersible Platform at Surge and Sway Movements. Journal of Ocean Research 2 (1), pp. 17–22, doi: 10.12691/jor-2-1-4.
  • 22. Shokouhian, M., Head, M., Seo, J., Schaffer, W. & Adams, G. (2019) Hydrodynamic response of a semi-submersible platform to support a wind turbine. Journal of Marine Engineering & Technology 20 (3), pp. 170–185, doi: 10.1080/20464177.2019.1571662.
  • 23. Tahar, A. & Kim, M.H. (2008) Coupled-dynamic analysis of floating structures with polyester mooring lines. Ocean Engineering 35, pp. 1676–1685, doi: 10.1016/j.oceaneng. 2008.09.004.
  • 24. Tang, Y.-g., Zhang, S.-x., Zhang, R.-y. & Liu, H.-x. (2007) Development of study on the dynamic characteristics of deep water mooring system. Journal of Marine Science and Application 6(3), pp. 17–23, doi:10.1007/s11804-007- 7016-2.
  • 25. van den Boom, H.J.J. (1985) Dynamic behaviour of mooring lines. BOSS Conference, Delft, The Netherlands. 26. Wang, D. (2007) Static analysis of a wire rope-chain-buoy/ sinker mooring line. China Offshore Platform 6, pp. 16–20.
  • 27. Yu, J., Hao, S., Yu, Y., Chen, B., Cheng, S. & Wu, J. (2019) Mooring analysis for a whole TLP with TTRs under tendon one-time failure and progressive failure. Ocean Engineering 182, pp. 360–385, doi: 10.1016/j.oceaneng.2019.04.049.
  • 28. Yuan, Z.-M., Incecik, A. & Ji, C. (2014) Numerical study on a hybrid mooring system with clump weights and buoys. Ocean Engineering 88, pp. 1–11, doi: 10.1016/j.oceaneng. 2014.06.002.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f449d117-4006-41a7-9d34-cf37216d6143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.