PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zeolitization of sewage sludge ash with a fusion method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study shows the results of zeolitization of municipal sewage sludge ash with the indirect fusion method followed by a hydrothermal method. The zeolitization of sewage sludge ash was conducted at the melting temperature of 550°C and the melting time of 60 minutes, crystallization temperatures of 60°C and 90°C, crystallization time of 6 hours and the SSA:NaOH ratio of 1:1.8; 1:1.4. The research of modified sewage sludge ashes included the observation of changes of ash particles surface and the identification of crystalized phases. The zeolitization of sewage sludge ash at the ratio of SSA:NaOH 1.0:1.4 did not cause the formation of zeolite phases. On the other hand, the zeolitization at the ratio of SSA:NaOH 1.0:1.8 resulted in the formation of desired zeolite phases such as zeolite Y (faujasite) and hydroxysodalite. The presented method of sewage sludge ash zeolitization allows to obtain highly usable material. Synthesized zeolites may be used as adsorbents and ion exchangers. They can be potentially used to remove heavy metals as well as ammonia from water and wastewater.
Rocznik
Strony
138--146
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Kielce, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Bandura, L., Panek, R., Rotko, M. and Franus, W. 2016. Synthetic zeolites from fly ash for an effective trapping of BXT in gas. Microporous and Mesoporous Materials, 223, 1–9.
  • 2. Bayati, B., Babaluo, A.A. and Ahmadian, N.P. 2009. Synthesis and seeding time effect on the inter-crystalline structure of hydroxyl-sodalite zeolite membranes by single gas (H2 and N2) Permeation. Iran Journal Chemistry Engineering, 28, 1–12.
  • 3. Boycheva. S., Zgureva. D. and Shoumkova, A. 2015. Recycling of lignite coal fly ash by its conversion into zeolites. Coal Combustion and Gasification Products.7. 1–8.
  • 4. Bukhari, S.S., Behin, J., Kazemian, H. and Rohani, S. 2014. A comparative study using direct hydrothermal and indirect fusion methods to produce zeolites from coal fly ash utilizing single-mode microwave energy. Journal of Material Science. 49. 8261–8271.
  • 5. Carlos, A., Rios, R., Craig, D.W and Clive L.R. 2009. A comparative study of two methods for the synthesis of fly ash – based sodium and potassium type zeolites.Fuel.88.1403–1416.
  • 6. Chen, C-H., Chiou, I-J. and Wang, K-S. 2006. Sintering effect on cement bonded sewage sludge ash. Cement and Concrete Composites. 28.26–32.
  • 7. Commission of European Communities, Council Directive 86/278/EEC of 4 July 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.
  • 8. Commission of European Communities, Council Directive 91/271/EEC of 21 March 1991 concerning urban wastewater treatment, amended by the 98/15/EC of 27 February 1998.
  • 9. Commission of European Communities, Council Directive 99/31/EC of 26 April 1999 on the landfill of waste.
  • 10. de Gennaro, R. , Cappelletti P., Cerri, G., de Gennaro, M., Dondi, M. and Langella, A. 2004. Zeolitic tuffs as raw material for lightweight aggregates. Applied Clay Science. 25. 71–78.
  • 11. Donatello, S., Freeman-Pask A., Tyrer M. and Cheseman C.R. 2010. Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement Concrete Composites. 2. 54–61.
  • 12. Dyer, A. 1988. An introduction to zeolite molecular sieves. New York. Wiley.
  • 13. Fotovat, F., Kazemian H. and Kazemein, M. 2009. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mineral Research Bulletin. 44, 913–917.
  • 14. Franus, W. and Wdowin, M. 2010. Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resources Management. 26, 133–148.
  • 15. Fukui, K., Nishimoto, T., Takiguchi, M., and Yoshida, H. 2006. Effect of NaOH concentration on zeolite synthesis from fly ash with hydrothermal treatment method. KONA Power and Particle Journal. 24, 183–190.
  • 16. Htun, M.M.H., Htay, M.M., and Lwin, M.Z. 2012. Preparation of Faujasite type Zeolite X from pure silica and alumina sources. Presented at The Second International Congress on Interdisciplinary Research and Development, Thailand, 31 May-1 June.
  • 17. Juan, R. , Hernandez, S., Andres, J. M., and Ruiz, C. 2007. Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash. Fuel. 86. 1811–1821.
  • 18. Kazemian, H., Naghdali, Z., Kashani, G., and Farhadi, F. 2010. Conversion of high silicon fly ash to Na-P1 zeolite: Alkaline fusion followed by hydrotermal crystalization. Advanced Powder Technology. 21, 279–283.
  • 19. Latosińska, J. , and Gawdzik, J. 2014. The impact of combustion technology of sewage sludge on mobility of heavy metals in sewage sludge ash. Ecological Chemistry and Engineering S.21. 465–475.
  • 20. Lee, J.S., Eom, S.W., and Choi, H.Y. 2007. Synthesis of zeolite from sewage sludge incinerator fly ash by hydrothermal reaction in open system. Korean Journal of Environmental Health. 33, 317–324.
  • 21. Lee, K.M., and Jo, Y.M. (2010). Synthesis of zeolite from waste fly ash for adsorption of CO2. Journal Material Cycles Waste Management. 12. 212–219.
  • 22. Lee, M-G., Yi., G., Ahn, B., and Roddick, F. 2000. Conversion of coal fly ash into zeolite and heavy metal removal characteristics of the products. Korean Journal of Chemistry Engineering. 17. 325–331.
  • 23. Liew, A.G., Idris, A., Samad, A.A., Noor, M.J.M. M. and Baki. A.M. 2004. Incorporation of sewage sludge in clay brick and its chracterization, Waste Management and Research. 22.226 – 233.
  • 24. Littlewood, J., Shaw, S., Bots, P., Peacock, C., Trivedi, D. and Burke, I. 2015. Effect of solution composition on the recrystallization of kaolinite to feldspathoids in hyperalkaline conditions: limitations of pertechnetate incorporation by ion competition effects. Mineralogical Magazine. 79, 1379–1388.
  • 25. Molina A. and Poole C. 2004. A comparative study using two methods to produce zeolite from fly ash. Mineral Engineering, 17, 167–173.
  • 26. Monzó J., Payá J., Borrachero M.V. and Girbés I. 2003. Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Management, 23, 373–381.
  • 27. Mulgundmath, V.P., Tezel, F.H., Saatcioglu, T. and Golden, T.C. 2012. Adsorption and separation of CO2/N2 and CO2/CH4 by 13X Zeolite. Microporous and Mesoporous Materials, 90, 730–738.
  • 28. Murayama, N., Yamamoto, H. and Shibata, J. 2002. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. International Journal of Mineral Processing, 64, 1–17.
  • 29. Osmanoğlu, A.E. 2006. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Journal of Hazardous Material, B137, 332–335.
  • 30. Park, M.,Choi, Ch.L., Lim, W.T., Kim, M.Ch., Choi, J. and Heo, N.H. 2000. Molten-slat method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-slat system. Microporous and Mesoporous Materials, 37, 81–89.
  • 31. Petterson, A., Zevenhoven, M., Steenari, B.M. and Åmand, L.E. 2008. Application of chemical fractionation methods for characterization of biofuel, waste derived fuels and CFB co-combustion fly ashes. Fuel, 87, 3183–3193.
  • 32. Pichór, W., Mozgawa, W., Król, M. and Adamczyk, A. 2014. Synthesis of the zeolites on the lightweight aluminosilicate fillers. Materials Research Bulletin, 49, 210–215.
  • 33. Polat, E., Karaca, M., Demir, H. and Onus, N. 2004. Use of natural zeolite (clinoptiolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12, 183–189.
  • 34. Qiu, W., and Zheng Y. 2009. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145, 483–488.
  • 35. Querol X., Moreno N., Umana J.C., Alastuey A., Harnandez E., Lopez-Soler A. and Plana F. 2002. Synthesis of zeolites form coal fly ash: an overview. International Journal of Coal Geology, 50, 413–423.
  • 36. Querol, X., Alastuey, A., Fernandezturiel, J.L. and Lopezsoler, A. 1995. Synthesis of zeolites by alkaline activation of ferro-aluminus fly-ash. Fuel, 74, 1226–1231.
  • 37. Rayalu, S., Meshram, S.U. and Hasan, M.Z. 2000. Highly crystalline faujasitic zeolites from flyash. Journal of Hazardous Materials, B77, 123–131.
  • 38. Ruiz, R., Banco C., Pesquera, F., Gonzalez, F., Benito, I. and Lopez, J.L. 1997. Zeolitization of a bentonite and its application to removal of ammonium ion form waste water. Applied Clay Science, 12, 73–83.
  • 39. Shigemoto, N., Hayashi, H. and Miyara. K. 1993. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. Journal of Material Science, 28, 4781–4786.
  • 40. Stamires, D.N. 1973. Properties of the zeolite, faujasite substitutional series: a review with new date. Clays and Clay Minerals, 21, 379–389.
  • 41. Takahashi, M., Kato, S. and Iwasaki, S. 2001. Technology for recovering phosphorus salt and zeolite from incinerated ash of sewage treatment sludge. Journal of Advanced Science, 13, 163–166.
  • 42. Tanaka, H., Furusawa, S. and Hino, R. 2002. Synthesis, Characterization and Formation Process of Na-X Zeolites from Coal Fly Ash. Journal of Material Synthetic Processing, 10, 143–148.
  • 43. Thuadaij. P. and Nuntiya, A. 2012. Preparation and characterizatoin of faujasite using fly ash and amorphuus silica from rice husk ash. Procedia Engineering, 32. 1026–1032.
  • 44. Wainwright P.J. and Cresswell D.J.F. 2001. Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Management, 21, 241–246.
  • 45. Wajima T. and Ikegami Y. 2009. Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion. Ceramic International, 35, 2983–2986.
  • 46. Wajima, T. and Munakata, K. 2014. Preparation of zeolitic material with simultaneous removal of NH4+ and PO4- from paper sludge ash via acid leaching. Journal of Material Cycles Waste Management, 16, 367–372.
  • 47. Wałek, T.T., Saito, F. and Zhang, Q. 2008. The effect of low solid/liquid ratio on hydrothermal synthesis of zeolites from fly ash. Fuel, 87, 3194–3199.
  • 48. Wang K.-S., Chiou I-J., Chen Ch-H., and Wang D. 2005. Lightweight properties and pore structure of foamed materialmade from sewage sludge ash. Construction and Building Materials, 19, 627–633.
  • 49. Wdowin, M., Franus, M., Panek, R., Badura, L., and Franus, W. 2014. The conversion technology of fly ash into zeolites. Clean Technology Environmental Policy, 16, 1217–1223.
  • 50. Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Zhang, L., Wu, W. , and Tian, B. 2011. Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes. Desalination, 277, 46–53.
  • 51. Zhu, J., Meng, X., and Xiao, F. 2013. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontier of Chemical Sciences and Engineering, 7, 233–238.
  • 52. Żygadło, M., Seweryn, A., Woźniak, M., and Latosińska, J. 2011. Recycling ash from recovery plant energy as an example of realization of the idea of sustainable development. Problems of Sustainable Development, 6, 207–214.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4479e74-d520-49e6-98b6-86d225d3bf62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.