Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A very interesting approach in the theory of fixed point is some general structures was recently given by Jachymski by using the context of metric spaces endowed with a graph. The purpose of this article is to present some new fixed point results for G-nonexpansive mappings defined on an ultrametric space and non-Archimedean normed space which are endowed with a graph. In particular, we investigate the relationship between weak connectivity graph and the existence of fixed point for these mappings.
Czasopismo
Rocznik
Tom
Strony
81--90
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
autor
- Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
Bibliografia
- [1] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 109-116.
- [2] M. Alfuraidan, On Monotone Pointwise Contractions in Banach Spaces With a Graph, Fixed Point Theory Appl., 2015.
- [3] T. Diagana, Non-Archimedean Linear Operators and Applications, Nova Science publisheres, 2009.
- [4] G. Gwóźdź-Łukawska, J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl. 356 no. 2 (2009) 453-463.
- [5] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 no. 7-8 (2009) 3403-3410.
- [6] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (4) (2008) 1359-1373.
- [7] W.A. Kirk, N. Shahzad, Some fixed point results in ultrametric spaces, Topology Appl. 159 (15) (2012) 3327-3334.
- [8] J.J. Nieto, R.L. Pouso, R. Rodriguez-López, Fixed point theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517.
- [9] J.J. Nieto, R. Rodriguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Vol. 22 (3) (2005) 223-239.
- [10] J.J. Nieto, R. Rodriguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. 23 (2007) 2205-2212.
- [11] D. O’Regan, A. Petruśel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2) (2008) 1241-1252.
- [12] C. Petalas, T. Vidalis, A fixed point theorem in Non-Archimedean vector spacs, Amer. Math. Soc. 118 (3) (1993) 819-821.
- [13] C. Perez-Garcia, W.H. Schikhof, Locally Convex Spaces Over Non-Archimedean Valued Fields. Cambridge University Press, 2010.
- [14] A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 no. 2 (2006) 411-418 (electronic).
- [15] S. Priess-Crampe, P. Ribenboim, Fixed point and attractor theorems for ultrametric spaces, Forum Math. 12 no. 1 (2000) 53-64.
- [16] A.C.M. Ran, M.C.B. Reurings, A.C.M. Ran, M.C.B.Reurings, A fixed, point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
- [17] A.C.M. Van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, 1978.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f445745a-4783-4a49-a957-ff2a4e285c6c