PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical study of MHD Williamson-nano fluid flow past a vertical cone in the presence of suction/injection and convective boundary conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.
Rocznik
Strony
115--138
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Osmania University, Department of Mathematics, University College of Science, Hyderabad – 500007, Telangana Sate, India
  • Osmania University, Department of Mathematics, University College of Science, Saifabad, Hyderabad – 500004, Telangana Sate, India
Bibliografia
  • [1] Williamson R.V.: The flow of pseudoplastic materials. Ind. Eng. Chem. 21(1929), 11, 1108–1111.
  • [2] Aldabesh A., Khan S.U., Habib D., Waqas H., Tlili I., Khan M.I., Khan W.A.: Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy. Alexandria Eng. J. 59(2020), 6, 4315–4328.
  • [3] Krishnamurthy M.R., Prasannakumara B.C., Gireesha B.J., Gorla R.S.R.: Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng. Sci. Technol. 19(2016), 1, 53–61.
  • [4] M. Amer Q.: Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation. Symmetry. 13(2020), 1, 1–10.
  • [5] Loganathan K., Rajan S.: An entropy approach of Williamson nanofluid flow with joule heating and zero nanoparticle mass flux. J. Therm. Anal. Calorim. 141(2020),6, 2599–2612.
  • [6] Dawar A., Shah Z., Islam S., Khan W., Idrees M.: An optimal analysis for DarcyForchheimer three-dimensional Williamson nanofluid flow over a stretching surface with convective conditions. Adv. Mech. Eng. 11(2019), 3, 1687814019833510.
  • [7] Yahya A.U., Salamat N., Habib D., Ali B., Hussain S., Abdal S.: Implication of bio-convection and Cattaneo-Christov heat flux on Williamson sutter by nanofluid transportation caused by a stretching surface with convective boundary. Chinese J. Phys.73(2021), 706–718.
  • [8] Sreedevi P., Reddy P.S.: Williamson hybrid nanofluid flow over swirling cylinder with Cattaneo-Christov heat flux and gyrotactic microorganism. Wave Random Complex Med. (2021), 1–28. doi: 10.1080/17455030.2021.1968537.
  • [9] Shafiq A., Sindhu T.N.: Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface. Results Phys. 7(2017), 3059–3067.
  • [10] Azam M., Mabood F., Xu T., Waly M., Tlili I.: Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy. Results Phys. 19(2020), 103576.
  • [11] Ahmed K., Khan W.A., Akbar T., Rasool G., Alharbi S.O., Khan I.: Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface. Fluids 6(2021), 7, 260.
  • [12] Nazir U., Sadiq M.A., Nawaz M.: Non-Fourier thermal and mass transport in hybridnano-Williamson fluid under chemical reaction in Forchheimer porous medium. Int. Commun. Heat Mass Transfer. 127(2021), 105536.
  • [13] Kumaran G., Sandeep N., Vijayaragavan R.: Melting heat transfer in magnetohydrodynamic radiative Williamson fluid flow with non-uniform heat source/sink. IOP Conf. Ser.: Mater. Sci. Eng. 263(2017), 6, 062022.
  • [14] Raju C.S., Sandeep N., Ali M.E., Nuhait A.O.: Heat and mass transfer in 3-D MHD Williamson-casson fluids flow over a stretching surface with non-uniform heat source/sink. Therm. Sci. 23(2019), 1, 281–293.
  • [15] Bhatti M., Arain M., Zeeshan A., Ellahi R., Doranehgard M.: Swimming of gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. J. Energ. Stor. 45(2022), 103511.
  • [16] Shateyi S., Muzara H.: On the numerical analysis of unsteady MHD boundary layer flow of Williamson fluid over a stretching sheet and heat and mass transfers. Computation 8(2020), 2, 30–55.
  • [17] Nadeem S., Hussain S.T., Lee C.: Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30(2013), 3, 619–625.
  • [18] Choi S.U.S., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proc. ASME Int. Mechanical Engineering Cong. Expo., San Francisco,12–17 Nov. 1995, 196525.
  • [19] Suresh S., Venkitaraj K.P., Selvakumar P., Chandrasekar M.: Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp. Thermal Fluid Sci. 38(2012), 54–60.
  • [20] Nadeem S., Abbas N.: On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Can. J. Phys. 97(2018), 4,392–399.
  • [21] Devi S.S.U.: Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 94(2016), 5, 490–496.
  • [22] Khan W.A., Alshomrani A.S., Alzahrani A.K., Khan M., Irfan M.: Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady threedimensional Eyring-Powell magneto-nanofluid flow. Pramana 91(2018), 5, 1–9.
  • [23] Lu D., Ramzan M., Ahmad S., Shafee A., Suleman M.: Impact of nonlinear thermal radiation and entropy optimization coatings with hybrid nanoliquid flow past a curved stretched surface. Coatings 8(2018), 12, 414–430.
  • [24] Khan W. A., Sultan F., Ali M., Shahzad M., Khan M., Irfan M.: Consequences of activation energy and binary chemical reaction for 3D flow of cross-nanofluid with radiative heat transfer. J. Braz. Soc. Mech. Sci. Eng. 41(2019), 1, 1–13.
  • [25] Khan W.A., Ali M., Sultan F., Shahzad M., Khan M., Irfan M.: Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of cross magneto-fluid. Pramana 92(2019), 2, 1–16.
  • [26] Khan M.S., Karim I., Islam M. S., Wahiduzzaman M.: MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid. Nano Converg. 1(2014), 1, 1–13.
  • [27] Motsumi T.G., Makinde O.D.: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys. Scr.86(2012), 6, 045003.
  • [28] Rana P., Shukla N., Bég O.A., Bhardwaj A.: Lie group analysis of nanofluid slip flow with Stefan blowing effect via modified Buongiorno’s model: entropy generation analysis. Differ. Equ. Dyn. Syst. 29(2021), 193–210.
  • [29] Song Y.Q., Khan S.A., Imran M., Waqas H., Khan S.U., Khan M.I., Chu Y.M.: Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk. Alexandr. Eng. J. 60(2021), 5, 4607–4618.
  • [30] Alsabery A. I., Tayebi T., Kadhim H. T., Ghalambaz M., Hashim I., Chamkha A. J.: Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. J. Adv. Res. 30(2021), 63–74.
  • [31] Turkyilmazoglu M., Pop I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Tran. 59(2013), 167–171.
  • [32] Hayat T., Muhammad T., Shehzad S. A., Alsaedi A.: Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model. Appl. Math. Mech. 36(2015), 6, 747–762.
  • [33] Sheikholeslami M., Shehzad S. A.: Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int. J. Heat Mass Transf. 120(2018), 1200–1212.
  • [34] Sarkar A., Das K., Kundu P.K.: On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium. J. Mol. Liq. 223(2016), 725–733.
  • [35] Vajravelu K., Nayfeh J.: Hydromagnetic convection at a cone and a wedge. Int. Commun. Heat Mass Transf. 19(1992), 701–710.
  • [36] Chamkha A.J.: Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media. Int. Commun. Heat Mass Transf. 23(1996), 875–887.
  • [37] Rao BM., Gopal D., Kishan N., Ahmed S., Prasad P.D.: Heat and mass transfer mechanism on three-dimensional flow of inclined magneto Carreau nanofluid with chemical reaction. Arch. Thermodyn. 41(2020), 6, 223–38.
  • [38] Sathyanarayana M., Ramakrishna Goud T.: Characteristics of MHD nanofluid flow towards a vertical cone under convective cross-diffusion effects through numerical solutions. Heat Transfer. 52(2022), 2, 1734–1753.
  • [39] Archana M., Gireesha B.J., Rashidi M.M., Prasannakumara B.C., Gorla R.S.: Bidirectionally stretched flow of Jeffrey liquid with nanoparticles, Rosseland radiation and variable thermal conductivity. Arch. Thermodyn. 39(2018), 4, 33–57.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f441b4b9-2e5c-4ebc-b515-77fa259095b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.