Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to determine the effect of particle size on the oxidation and flotation behavior of galena particles. Coarse (-0.074+0.038 mm), intermediate (-0.038+0.025 mm) and fine (-0.025 mm) galena particles were used in this study. Dissolution tests demonstrated that the amount of oxidation products increased with the decrease of particle sizes. The surface oxidization of galena was the greatest at pH 7.3, followed by pH 12 and 9, which were consist with the result of XPS. The micro-flotation results indicated that the effect of pH on the flotation recovery of galena enhanced with the reduction of particle sizes. The decreasing of particle sizes increases both the sorption rate of collector and the dissolution of galena, while the generation of hydrophilic product caused by dissolution is dominant, rendering the mineral hydrophilic. This study shows the differences in the surface oxidation and flotation behavior of different size fractions of galena particles. To promote the flotation recovery of the fine size fraction of galena particles, alleviating their oxidation is the key.
Słowa kluczowe
Rocznik
Tom
Strony
208--216
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
Bibliografia
- ALPERS, C.N., 1994. Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington, DC, 550.
- CHERNYSHOVA, I.V., 2003. An in situ FTIR study of galena and pyrite oxidation in aqueous solution. J. Electroanalytical Chemistry 558, 83-98.
- CVETICANIN, L., LAZIC, P., VUCINIC, D., KNEZEVIC, D., 2012. The galena flotation in function of grindability. J. Min. Sci. 48, 760-764.
- CVETICANIN, L., VUCINIC, D., LAZIC, P., KNEZEVIC, M., 2015. Effect of galena grain size on flotation kinetics. J. Min. Sci. 51, 591-595.
- FORNASIERO, D., LI, F. RALSTON, J., SMART, R.S.C., 1994. Oxidation of galena surface I. X-ray photoelection spectroscopy and dissolution kinetics studies. J. Colloid. Interf. Sci. 164, 333-344.
- FORSLING, W.; SUN, Z., 1997. Use of surface complexation models in sulphide mineral flotation. Int. J. Miner. Process. 51, 81-96.
- GORYACHEV, B.E., NIKOLAEV, A.A., LYAKISHEVA, L.N., 2010. Electrochemistry of galena oxidation as the basis for optimization of agent modes in flotation of polymetallic ores. J. Min. Sci. 46, 681-689.
- GORYACHEV, B.E., NIKOLAEV, A.A., 2012. Galena oxidation mechanism. J. Min. Sci. 48, 354-362.
- GORYACHEV, B.E., NIKOLAEV, A.A., 2012. Galena and alkali metal xanthate interaction in alkaline conditions. J. Min. Sci. 48, 1058-1064.
- HSIEH Y. H., HUANG C., 1989. The dissolution of PbS(s) in dilute aqueous solutions. J. Coll. Inter. Sci. 131, 537-549.
- LAAJALEHTO, K., KARTIO, I., SUONINEN, E., 1997. XPS and SR-XPS techniques applied to sulphide mineral surfaces. Int. J. Miner. Process. 51, 163-170.
- LAAJALEHTO, K., NOWAK, P., SUONINEN, E., 1993. On the XPS and IR identification of the products of xanthate sorption at the surface of galena. Int. J. Miner. Process. 37, 123-147.
- LAM-THI, P.O., LAMACHE, M., BAUER, D., 1984. Etude electrochimique de l'oxydation simultanee de la galene (PbS) et de l'ethylxanthate—condition de formation du xanthate de plomb en surface de la galena. Electrochim. Acta. 29, 217-226.
- LEISTNER T., PEUKER, U.A., RUDOLPH, M., 2017. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Minerals Engineering. 109, 1-9.
- LIU, J.; ARUGUETE, D.M.; JINSCHEK, J.R., DONALD RIMSTIDT, J., HOCHELLA, M. F., 2008. The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochimica Et Cosmochimica Acta. 72, 5984-5996.
- LI, M., SHEN, G., 1964. The JI type Hallimond tube. Acta Metallurgica Sinica. 7, 322-326.
- LOEWENBERG, M, DAVIS, R.H., 1994. Flotation rates of fine spherical particles and droplets. Chemical Engineering Science. 49, 3923-3941.
- MERNAGH, T.P., TRUDU, A.G., 1993. A laser Raman microprobe study of some geologically important sulphide minerals. Chem. Geol. 103, 113–127.
- MIKHLIN, Y.L., KARACHAROV, A.A., LIKHATSKI, M.N., 2015. Effect of sorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS. Int. J. Miner. Process. 144, 81-89.
- NDZBET E., SCHUHMANN D., VANEL P., 1994. Study of the impedance of a galena electrode under conditions similar to those used in sulphide mineral flotation—I. Electrode oxidation and xanthate sorption. Electrochim. Acta. 39, 745-753.
- NOWAK, P., LAAJALEHTO, K., KARTIO, I., 2000. A flotation related X-ray photoelectron spectroscopy study of the oxidation of galena surface. Colloid. Surfaces A. 161, 447-460.
- NOWAK, P., LAAJALEHTO, K., 2000. Oxidation of galena surface—an XPS study of the formation of sulfoxy species. Applied Surface Science. 157, 101-111.
- PENG, Y., GRANO, S., 2010. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids. J. Colloid. Interf. Sci. 347, 127-131.
- POLAT, M., CHANDER, S., 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. Int. J. Miner. Process. 58, 145-166.
- QIN, W., WANG, X., MA, L., JIAO, F., LIU, R., and GAO, K., 2015. Effects of galvanic interaction between galena and pyrite on their flotation in the presence of butyl xanthate. Inter. J. Transaction of Nonferrous Metals Sociaty of China. 25, 3111−3118.
- SHAPTER, J.G., BROOKER, M.H., SKINNER, W.M., 2000. Observation of the oxidation of galena using Raman spectroscopy. Int. J. Miner. Process. 60, 199-211.
- SONG, S., LOPEZ-VALDIVIESO, A., REYES-BAHENA, J.L., BERMEJO-PEREZ, H.I., TRASS, O., 2000. Hydrophobic flocculation of galena fines in aqueous suspensions. J. Colloid. Interf. Sci. 227, 272-281.
- STOBER, W., ARNOLD, M., 1961. Anomalien bei der Ablösung von KieselsÄure von der OberflÄche feinkörniger Siliziumdioxydpulver. Colloid and Polymer Science. 174, 20-27.
- TONG, X., 2017. A device of mineral flotation. China: 201621299558.5, P. 2017-08-11.
- TRAHAR, W.J., 1976. The selective flotation of galena from sphalerite with special reference to the effects of particle size. Int. J. Miner. Process. 3, 151-166.
- ZHANG, Q., XU, Z., BOZKURT, V., FINCH, J., 1997. Pyrite flotation in the presence of metal ions and sphalerite. Int. J. Miner. Process. 52, 187-201.
- ZHOU, G., JIA, R., ZHANG, H., SHANG, M., 2016. Application of flotation in Hallimond tube and improvement of its device. Value Engineering. 11, 168-170.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f43e24ff-5e8b-4a5f-98db-4fb0e223c0a0