PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic Measurement System for Determination of Leakage Flow Rate in Compressed Air Pipeline System

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method of indirect flow rate measurement in a pneumatic pipeline system was developed by the authors. The method enables to measure the controlled leakage in a branch line and was used to construct automatic measuring systems auditing the compressed air systems (CAS) piping. In the CAS audit the volume and cost of the leakage in a compressed air pipeline system is evaluated. Based on the authors’ patent, an automatic measuring system (AMS) for measurement of the leakage flow rate in industrial compressed air system piping, was developed. The AMS consists of a measurement device (MD) and a control system (CS). In the measurement device (MD) a novel bifunctional pneumatic proportional control valve is used. The AMS system will be used in the new research project “Mobile laboratory of compressed air system audit” based on the authors’ concept.
Rocznik
Strony
159--170
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Machine Building, al. 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Kielce University of Technology, Faculty of Mechatronics and Machine Building, al. 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] Ruppelt, E. (1998). Druckluft-Handbuch. Vulkan-Verlag, Essen.
  • [2] Bhatia, A. (2009). Compressors and Compressed Air Systems. Continuing Education and Development. NY, USA.
  • [3] Dindorf, R., Takosoglu, J., Wos, P. (2017). Development of pneumatic control systems. Monograph M89, Kielce Univ. of Tech., Kielce.
  • [4] Radgen, P., Blaustein, E. (2010). Compressed Air Systems in the European Union. Frauenhofer ISI, Feldbach.
  • [5] Bertoldi, P., Elle, M. (2009). The European Motor Challenge Programme 2003-2009. European Commission, DG JRC, Institute for Energy, Brussels.
  • [6] Kaya, K., Phelan, P., Chau, D., Sarac, H. (2002). Energy conservation in compressed-air systems. International Journal of Energy Research, (26), 837-849.
  • [7] Dindorf, R. (2012). Estimating potential energy savings in compressed air systems. Procedia Engineering, 39C, 204-211.
  • [8] Marshall, R. (2005). Compressed Air System Leaks, Best Practices to Compressed Air. Compressed Air Challenge. US DOE.
  • [9] CS-Instruments News: Energy analysis - flow measurement - leakage calculation. Available: http://www.cs-instruments.com.
  • [10] Testo, Compressed Air Counter testo 6440. Available: https://www.testo.com.
  • [11] Moon, C., Brown, W., Mellen, S., Frenz, E., Pickering, D.J. (2009). Ultrasound Techniques for Leak Detection. SAE Technical Paper, 2009-01-2159.
  • [12] VP Mass flow meters and leak detectors, VP Instruments. Available: https://www.vpinstruments.com.
  • [13] SMC air leakage tester. Available: http://www.smcpneumatics.com.
  • [14] CS-Instruments, LD 300 ultrasonic leak detector. Available: http://www.cs-instruments.com.
  • [15] CTS Leak Test Instrument. CTS Cincinnati Test Systems. Available: http://www.cincinnati-test.com.
  • [16] Dudić, S., Ignjatović, I., Šešlija, D., Blagojević, V., Stojiljković, M. (2012). Leakage quantification of compressed air on pipes using thermovision, 16, 621-631.
  • [17] Dudic, S., Ignjatovic, I., Šešlija, D., Stojiljkovic, M. (2012). Leakage quantification of compressed air using ultrasound and infrared thermography.Measurement, 45, 1689-1694.
  • [18] Wang, T., Qin, H., Zhao, L., Fan, W. (2013). Localization of air leak based on fuzzy clustering of infrared image. Transactions of Beijing Institute of Technology, (3), 1-8.
  • [19] Estimate Your Compressed Air Cost. US DOE, (2004). Industries of the Future Workshops Supplemental Worksheet. Illinois Industries of the Future Program, Chicago.
  • [20] Liang, H., Maolin, C., Jiawei, W. (2010). Instantaneous leakage flow rate measurement of compressed air. Int. Conf. Mech. Autom. Control Eng. IEEE, 2675-2679.
  • [21] Liang, H., Maolin, C. (2008). Parallel connection measuring method for gas leakage based on standard flow. 7th JFPS International Symposium on Fluid Power, Toyoma.
  • [22] Dindorf, R., Wos P. (2012). Measurement methods of compressed air leakage for pneumatic system. Hydraulika a Pneumatika, (3), 1-5.
  • [23] Dindorf, R., Wos, P. (2014). Indirect method of leakage flow rate measurement in compressed air pipelines. Applied Mechanics and Materials, (630), 288-293.
  • [24] Patent application, (2016). A1 417036 2016 (Poland), Device for automatic measurement of leakage in gas pipelines, especially compressed air.
  • [25] ISO 6358-2, (2013). Pneumatic fluid power - Determination of flow-rate characteristics of components using compressible fluids - Part 1: General rules and test methods for steady-state flow.
  • [26] ISO/IEC Guide 98-3, (2008). Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f43c7a47-9869-4c2b-95dd-87dbcca9b061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.