PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Paperboard Mill Sludge Derived Nanocellulose as a Biosorbent for Hexavalent Chromium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, paperboard mill sludge derived nanocellulose as biosorbent for removal of hexavalent chromium from simulated aqueous solution prepared from potassium dichromate. The adsorbents namely, CA-NC and FA-NC were prepared through citric and formic acid hydrolyses of the nanocellulose. The prepared sorbents were utilized for the adsorption of Cr(VI), with parameters such as pH, adsorbent dosage, solute concentration and contact time played pivotal role in the study. The ideal circumstances of these parameters to perform well were notably pH of 2, with adsorbent dose of 1.5 g, solute concentration of 100 mg•L-1, with a contact duration of 60 minutes. The adsorption followed pseudo second order reaction and fitted the Langmuir isotherm model indicating chemisorption coupled with monolayer adsorption of adsorbate onto the adsorbent.
Słowa kluczowe
Rocznik
Strony
44--53
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
  • Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore 641 003, India
  • Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore 641 003, India
  • Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
  • School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, India
  • Nodal Officer, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Karur 639001, India
  • Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
Bibliografia
  • 1. Abechi, E., Gimba, C., Uzairu, A., Kagbu, J. 2011. Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell. Archives of Applied Science Research, 3(1), 154–164.
  • 2. Abu-Danso, E., Srivastava, V., Sillanpää, M., Bhatnagar, A. 2017. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton. International Journal of Biological Macromolecules, 102, 248–257.
  • 3. Akl, M.A., El-Zeny, A.S., Ismail, M., Abdalla, M., Abdelgelil, D., Mostafa, A.G. 2023. Smart guanyl thiosemicarbazide functionalized dialdehyde cellulose for removal of heavy metal ions from aquatic solutions: Adsorption characteristics and mechanism study. Applied Water Science, 13(6), 1–18.
  • 4. Al-Salehin, P.Z., Moeinpour, F., Mohseni-Shahri, F.S. 2019. Adsorption isotherm and thermodynamic studies of As (III) removal from aqueous solutions using used cigarette filter ash. Applied Water Science, 9(8), 1–8.
  • 5. Awang, N.A., Salleh, W.N.W., Yusof, N., Karim, Z.A., Ismail, A.F. 2021. Nanocellulose-Based Materials for Heavy Metal Removal from Wastewater. Environmental Nanotechnology Volume, 5, 1–34.
  • 6. Bajpai, P. 2015. Composition of Waste. In P. Bajpai (Ed.), Management of Pulp and Paper Mill Waste. Springer International Publishing, 19–29. https://doi.org/10.1007/978-3-319-11788-1_3
  • 7. Dada, A., Olalekan, A., Olatunya, A., Dada, O. 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.
  • 8. Dev, V.V., Nair, K.K., Baburaj, G., Krishnan, K.A. 2022. Pushing the boundaries of heavy metal adsorption: A commentary on strategies to improve adsorption efficiency and modulate process mechanisms. Colloid and Interface Science Communications, 49, 100626.
  • 9. Devi, N.L., Yadav, I.C., Shihua, Q.I., Singh, S., Belagali, S.L. 2011. Physicochemical characteristics of paper industry effluents – A case study of South India Paper Mill (SIPM). Environmental Monitoring and Assessment, 177(1), 23–33. https://doi.org/10.1007/s10661-010-1614-1
  • 10. Du, H., Liu, C., Zhang, Y., Yu, G., Si, C., Li, B. 2016. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Industrial Crops and Products, 94, 736–745.
  • 11. Fan, Z., Zhang, Q., Gao, B., Li, M., Liu, C., Qiu, Y. 2019. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention. Chemosphere, 217, 85–94.
  • 12. Hossini, H., Shafie, B., Niri, A.D., Nazari, M., Esfahlan, A.J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei, N., Hoseinzadeh, E. 2022. A comprehensive review on human health effects of chromium: Insights on induced toxicity. Environmental Science and Pollution Research, 29(47), 70686–70705. https://doi.org/10.1007/s11356-022-22705-6
  • 13. Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C. 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76(1), 63–65.
  • 14. Kaur, R., Tyagi, R.D., Zhang, X. 2020. Review on pulp and paper activated sludge pretreatment, inhibitory effects and detoxification strategies for biovalorization. Environmental Research, 182, 109094.
  • 15. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.
  • 16. Mohamed, S.H., Hossain, M.S., Kassim, M.H.M., Balakrishnan, V., Habila, M.A., Zulkharnain, A., Zulkifli, M., Yahaya, A.N.A. 2022. Biosorption of Cr(VI) using cellulose nanocrystals isolated from the waterless pulping of waste cotton cloths with supercritical CO2: Isothermal, kinetics, and thermodynamics studies. Polymers, 14(5), 887.
  • 17. Reshmy, R., Philip, E., Madhavan, A., Pugazhendhi, A., Sindhu, R., Sirohi, R., Awasthi, M. K., Pandey, A., Binod, P. 2022. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. Journal of Hazardous Materials, 424, 127516.
  • 18. Shatkin, J.A., Kim, B. 2017. Environmental Health and Safety of Cellulose Nanomaterials and Composites. In: Handbook of Nanocellulose and Cellulose Nanocomposites. John Wiley & Sons, Ltd, 683–729. https://doi.org/10.1002/9783527689972.ch21
  • 19. Singh, P., Itankar, N., Patil, Y. 2021. Biomanagement of hexavalent chromium: Current trends and promising perspectives. Journal of Environmental Management, 279, 111547. https://doi.org/10.1016/j.jenvman.2020.111547
  • 20. Sirviö, J.A., Anttila, A.-K., Pirttilä, A.M., Liimatainen, H., Kilpeläinen, I., Niinimäki, J., Hormi, O. 2014. Cationic wood cellulose films with high strength and bacterial anti-adhesive properties. Cellulose, 21, 3573–3583.
  • 21. Torgbo, S., Quan, V.M., Sukyai, P. 2021. Cellulosic value-added products from sugarcane bagasse. Cellulose, 28(9), 5219–5240.
  • 22. Turner, T., Wheeler, R., Oliver, I.W. 2022. Evaluating land application of pulp and paper mill sludge: A review. Journal of Environmental Management, 317, 115439.
  • 23. Wabaidur, S.M., Khan, M.A., Siddiqui, M.R., Otero, M., Jeon, B.-H., Alothman, Z.A., Hakami, A.A.H. 2020. Oxygenated functionalities enriched MW-CNTs decorated with silica coated spinel ferrite–A nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. Journal of Molecular Liquids, 317, 113916.
  • 24. Xu, Q., Huang, X., Guo, L., Wang, Y., Jin, L. 2021. Enhancing removal of Cr(VI), Pb2+, and Cu2+ from aqueous solutions using amino-functionalized cellulose nanocrystal. Molecules, 26(23), 7315.
  • 25. Yu, H.-Y., Zhang, D.-Z., Lu, F.-F., Yao, J. 2016. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chemistry & Engineering, 4(5), 2632–2643.
  • 26. Zia, Q., Tabassum, M., Lu, Z., Khawar, M.T., Song, J., Gong, H., Meng, J., Li, Z., Li, J. 2020. Porous poly (L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydrate Polymers, 227, 115343.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f43bfa8d-34de-4137-936c-d458526d2bf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.