PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of neutralizing substances on the content of trace elements in soil contaminated with cobalt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effect of increasing doses of cobalt (0, 20, 40, 80, 160, 320 mg/kg d.m. of soil) on the total content of trace elements in soil after application of manure, clay, charcoal, zeolite and calcium oxide. The neutralizing substances were applied at 2% of the soil weight, and calcium oxide at a dose corresponding to one hydrolytic acidity. The content of the cobalt, cadmium, lead, chromium, nickel, zinc, copper, manganese and iron was determined in soil. The contamination of soil with cobalt and the application of neutralizing substances had significant effects on the total content of trace elements in soil In the series without substances, the soil contamination with cobalt increased the content of cobalt, lead, chromium, nickel and zinc in soil. All the neutralizing substances reduced the content of cobalt, manganese and iron in soil. The highest decrease in the cobalt content was observed in the series with manure, whereas the highest decrease in zinc occurred after addition of charcoal. The decrease in the content of the other metals (except nickel and lead) was observed in the pots with CaO and zeolite. The effect of other neutralizing substances depended on the trace element.
Rocznik
Strony
45--55
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
  • Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-727 Olsztyn, Poland
  • Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-727 Olsztyn, Poland
Bibliografia
  • [1] KIERCZAK J., NEEL C., ALEKSANDER-KWATERCZAK U., HELIOS-RYBICKA E., BRIL H., PUZIEWICZ J., Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach, Chemosphere, 2008, 73 (5), 776.
  • [2] PANDEY N., SHARMA C.P., Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage, Plant Sci., 2002, 163 (4), 753.
  • [3] WYSZKOWSKI M., WYSZKOWSKA J., The effect of contamination with cadmium on spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil, Fresen. Environ. Bull., 2009, 18 (7), 1046.
  • [4] TAPPERO R., PELTIER E., GRÄFE M., HEIDEL K., GINDER-VOGEL M., LIVI K.J., RIVERS M.L., MARCUS M.A., CHANEY R.L., SPARKS D.L., Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel, New Phytol., 2007, 175 (4), 641.
  • [5] Regulation of the Minister of the Environment from the 1.09.2016 on how to assess the pollution of the earth’s surface, Journal of Laws of 2016, Item 1935 (in Polish).
  • [6] SHEPPARD P.R., SPEAKMAN R.J., RIDENOUR G., GLASCOCK M.D., FARRIS C., WITTEN M.L., Spatial patterns of tungsten and cobalt in surface dust of Fallon, Nevada, Environ. Geochem. Health, 2007, 29, 405.
  • [7] TAPPERO R., PELTIER E., GRAFE M., HEIDEL K., GINDER VOGEL M., LIVI K.J.T., RIVERS M.L., MARCUS M.A., CHANEY R.L., SPARKS D.L., Hyperaccumulator Alyssum murale relies on different metal storage mechanism for cobalt than for nickel, New Phytol., 2007, 175, 641.
  • [8] BISWAS S., DEY R., MUKHERJEE S., BANERJEE P.C., Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus Niger, Appl. Biochem. Biotech., 2013, 170 (7), 1547.
  • [9] MICÓ C., LI H.F., ZHAO F.J., MCGRATH S.P., Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils, Environ. Pollut., 2008, 156 (3), 883.
  • [10] CHATTERJEE J., CHATTERJEE C., Amelioration of phytotoxicity of cobalt by high phosphorus and its withdrawal in tomato, J. Plant Nutr., 2002, 25 (12), 2731.
  • [11] ABD-ALLA M.H., BAGY M.K., EL-ENANY A.W.E., BASHANDY S.R., Activation of Rhizobium tibeticum with flavonoids enhances nodulation, nitrogen fixation and growth of fenugreek (Trigonella foenumgraecum L.) grown in cobalt polluted soil, Arch. Environ. Contam. Toxicol., 2014, 66 (2), 303.
  • [12] US-EPA Method 3051, Microwave assisted acid digestion of sediment, sludges, soils and oils, 1994.
  • [13] Statsoft, Inc. STATISTICA data analysis software system, version 12, www.statsoft.com, 2014.
  • [14] NARENDRULA R., NKONGOLO K.K., BECKETT P., Comparative Soil Metal Analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo), B. Environ. Contam. Tox., 2012, 88 (2), 187.
  • [15] BÖRJESSON G., KIRCHMANN H., KÄTTERER T., Four Swedish long-term field experiments with sewage sludge reveal a limited effect on soil microbes and on metal uptake by crops, J. Soil Sediment., 2014, 14 (1), 164.
  • [16] PENG C., ALMEIRA J.O., GU Q., Effect of electrode configuration on pH distribution and heavy metal ions migration during soil electrokinetic remediation, Environ. Earth Sci., 2013, 69 (1), 257.
  • [17] KOSIOREK M., WYSZKOWSKI W., Effect of neutralising substances on selected properties of soil contaminated with cobalt, J. Ecol. Eng., 2016, 17 (3), 193.
  • [18] LI H.F., GRAY C., MICO C., ZHAO F.J., MCGRATH S.P., Phytotoxicity and bioavailability of cobalt to plants in a range of soils, Chemosphere, 2009, 75 (7), 979.
  • [19] BRADL H.B., Adsorption of heavy metal ions on soils and soils constituents, J. Colloid Interf. Sci., 2004, 277 (1), 1.
  • [20] KANIUCZAK J., HAJDUK E., ROŻEK D., The effect of liming and mineral fertilization on the cobalt content in plants grown in shaping. Part II. Cobalt content in winter wheat grain and spring barley, Zesz. Probl. Post. Nauk Rol., 2004, 502, 117 ( in Polish).
  • [21] GARCÍA-SÁNCHEZ A., ALASTUEY A., QUEROL X., Heavy metal adsorption by different minerals: Application to the remediation of polluted soils, Sci. Total. Environ., 2007, 147 (1–2), 91.
  • [22] WYSZKOWSKI M., Effect of contamination with copper and mineral or organic amendments on the content of trace elements in soil, Environ. Prot. Eng., 2017, 43 (4), 165.
  • [23] WYSZKOWSKI M., SIVITSKAYA V., Changes in the content of some micronutrients in soil contaminated with heating oil after the application of different substances, J. Elem., 2014, 19(1), 243.
  • [24] DICKINSON N.M., Strategies for sustainable woodland on contaminated soils, Chemosphere, 2000, 41 (1–2), 259.
  • [25] ADB EL-AZEEM S. A.M., AHMAD M., USMAN A.R.A., KIM K.R., OH S.E., LEE S.S, OK Y.S., Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials, Environ. Earth Sci., 2013, 70 (7), 3411.
  • [26] GUODONG Y., Copper, zinc, and nickel in soil solution affected by biosolids amendment and soil management, Aust. J. Soil Res., 2009, 47 (3), 305.
  • [27] KACZOR A., PAUL G., BRODOWSKA M.S., Changes in values of basic indicators of soil acidification as the effect of application of sewage sludge and flotation lime, Ecol. Chem. Eng., A, 2009, 16 (5/6), 583.
  • [28] WYSZKOWSKI M., SIVITSKAYA V., Effect of heating oil and neutralizing substances on the content of some trace elements in soil, Fresen. Environ. Bull., 2013, 22 (4), 973.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f43a2590-939e-493b-a5a2-6f07361331d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.