PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of Greenhouse Gas Emissions by Replacing Fertilizers with Digestate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digestate from a biogas plant can be a valuable organic and mineral fertilizer. Quantitative proportions of cosubstrates used in three agricultural biogas plants in Poland were analyzed. The composition of digestates was examined and large differences in the content of macronutrients were found, especially N and K. On the basis of the factors used to calculate emissions from the production and use of artificial fertilizers, the greenhouse gas (GHG) reduction resulting from replacing mineral fertilizers with digestate was calculated. In terms of 1 Mg of fresh digestate, this reduction may not seem large, as it amounts to 27.9–61.6 kg of CO2 eq, but it should be taken into account that digestate contains little dry matter. The annual amount of digestate used on an area of 1 ha allows avoiding GHG emissions of 25.8–44.5 Mg CO2 eq.
Rocznik
Strony
312--319
Opis fizyczny
Bibliogr. 53 poz., tab.
Twórcy
  • Department Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069 Lublin, Poland
  • Department Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069 Lublin, Poland
  • Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
autor
  • Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
  • Department Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069 Lublin, Poland
  • Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
autor
  • Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
Bibliografia
  • 1. Adiansyah J.S., Hadiyanto H., Ningrum N. 2021. Application of Life Cycle Assessment for Improving the Energy and Waste Management Strategy: A Case Study of Fertilizer Plant in Indonesia. Chem. Eng. Trans., 89, 145-50. doi:10.3303/CET2189025.
  • 2. Ahrens F., Land J., Krumdieck S. 2022. Decarbonization of Nitrogen Fertilizer: A Transition Engineering Desk Study for Agriculture in Germany. Sustain., 14, 8564. doi:10.3390/SU14148564/S1.
  • 3. Amhamed A.I., Qarnain S.S., Hewlett S., Sodiq A., Abdellatif Y., Isaifan R.J., Alrebei O.F. 2022. Ammonia Production Plants - A Review. Fuels, 3, 408-435. doi:10.3390/fuels3030026.
  • 4. Awasthi M.K., Sarsaiya S., Wainaina S., Rajendran K., Kumar S., Quan W., Duan Y., Awasthi S.K., Chen H., Pandey A., Zhang Z., Jain A., Taherzadeh M.J. 2019. A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. Renew. Sustain. Energy Rev., 111, 115–31. doi:10.1016/J.RSER.2019.05.017.
  • 5. Cavali M., Libardi Junior N., Mohedano R. de A., Belli Filho P., da Costa R.H.R., de Castilhos Junior A.B. 2022. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Sci. Total Environ., 822, 153614. doi:10.1016/j.scitotenv.2022.153614.
  • 6. Chojnacka K., Moustakas K., Witek-Krowiak A. 2020. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol., 295, 122223. doi:10.1016/j.biortech.2019.122223.
  • 7. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources.
  • 8. Crolla A., Kinsley C., Pattey E. 2013. Land application of digestate. In The Biogas Handbook: Science, Production and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 302-325. doi:10.1533/9780857097415.2.302.
  • 9. Czekała W., Jasinski T., Grzelak M., Witaszek K., Dach J. 2022. Biogas Plant Operation: Digestate as the Valuable Product. Energies, 15, 8275. doi:10.3390/en15218275.
  • 10. Czekała W., Lewicki A., Pochwatka P., Czekała A., Wojcieszak D., Jóźwiakowski K., Waliszewska H. 2020. Digestate management in polish farms as an element of the nutrient cycle. J. Clean Prod., 242, 118454. doi:10.1016/j.jclepro.2019.118454.
  • 11. Dach J., Mazurkiewicz J., Janczak D., Pulka J., Pochwatka P., Kowalczyk-Juśko A. 2020. Cow Manure Anaerobic Digestion or Composting - Energetic and Economic Analysis. Proc. 4th Int. Conf. Green Energy Appl. ICGEA 2020, Institute of Electrical and Electronics Engineers Inc., 143-7. doi: 10.1109/ICGEA49367.2020.239708.
  • 12. Dalby F.R., Hafner S.D., Petersen S.O., VanderZaag A.C., Habtewold J., Dunfield K., Chantigny M.H., Sommer S.G. 2021. Understanding methane emission from stored animal manure: A review to guide model development. J. Environ. Qual., 50, 817–35. doi:10.1002/JEQ2.20252.
  • 13. Dari B., Rogers C.W. 2021. Ammonia volatilization from fertilizer sources on a loam soil in Idaho. Agrosystems, Geosci. Environ. 4, 20192. doi:10.1002/AGG2.20192.
  • 14. Dong D., Yang W., Sun H., Kong S., Xu H. 2022. Effects of Split Application of Urea on Greenhouse Gas and Ammonia Emissions From a Rainfed Maize Field in Northeast China. Front Environ. Sci., 9, 743. doi:10.3389/fenvs.2021.798383/bibtex.
  • 15. Doyeni M.O., Stulpinaite U., Baksinskaite A., Suproniene S., Tilvikiene V. 2021.The Effectiveness of Digestate Use for Fertilization in Agricultural Cropping System. Plants, 10, 1734. doi.org/10.3390/plants10081734.
  • 16. EU Regulation, 2018, Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013.
  • 17. European Climate Law, 2021, Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999.
  • 18. European Council, 2020, Commission staff working document — impact assessment accompanying the document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions ‘Stepping up Europe’s 2030 climate ambition: investing in a climate-neutral future for the benefit of our people’
  • 19. European Environment Agency (EEA) 2022, Greenhouse gas emissions from agriculture in Europe. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-agriculture.
  • 20. European Green Deal, 2021, ‘Striving to be the first climate-neutral continent’, European Commission. Access: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 1 December 2022).
  • 21. Fagodiya R.K., Malyan S.K., Singh D., Kumar A., Yadav R.K., Sharma P.C., Pathak H. 2022. Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches. Sustain., 14, 11876. doi:10.3390/SU141911876.
  • 22. Feiz R., Carraro G., Brienza C., Meers E., Verbeke M., Tonderski K. 2022. Systems analysis of digestate primary processing techniques. Waste Manag., 150, 352–63. doi:10.1016/j.wasman.2022.07.013.
  • 23. Fernández-Rodríguez M.J., Palenzuela M.V., Ballesteros M., Mancilla-Leytón J.M., Borja R. 2022. Effect of different digestates derived from anaerobic co-digestion of olive mill solid waste (omsw) and various microalgae as fertilizers for the cultivation of ryegrass. Plant Soil, 475, 331–42. doi:10.1007/S11104-022-05370-Z/tables/4.
  • 24. Gajewska M., Kołecka K., Kowalczyk-Juśko A., Jóźwiakowski K. 2017. Draft report of risk assessment of biogas production – Poland. Project materials “Biogas Production Risk Assessment – TOR Biogas”, John Nourminen Foundation, Finland. https://johnnurmisensaatio.fi/wp-content/uploads/2019/05/poland_biogas-risk-assessment_final.pdf.
  • 25. Ghavam S., Vahdati M., Wilson I.A.G., Styring P. 2021. Sustainable Ammonia Production Processes. Front Energy Res., 9, 34. doi:10.3389/fenrg.2021.580808/bibtex.
  • 26. Gislon G., Colombini S., Borreani G., Crovetto G.M., Sandrucci A., Galassi G., Tabacco E., Rapetti L. 2020. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. J. Dairy Sci., 103, 8048–61. doi:10.3168/JDS.2019-18134.
  • 27. Guyomard H., Bouamra-Mechemache Z., Chatellier V., Delaby L., Détang-Dessendre C., Peyraud J.L., Réquillart V. 2021. Review: Why and how to regulate animal production and consumption: The case of the European Union. Animal, 15, 100283.doi:10.1016/j.animal.2021.100283.
  • 28. Hilgert J.E., Amon B., Amon T., Belik V., Dragoni F., Ammon C., Cárdenas A., Petersen S.O., Herrmann C. 2022. Methane Emissions from Livestock Slurry: Effects of Storage Temperature and Changes in Chemical Composition. Sustain., 14, 9934. doi:10.3390/SU14169934/S1.
  • 29. Janczak D., Mazurkiewicz J., Czekała W., Myszura M., Kozłowski K., Jeżowska A. A Possibility of Functioning Biogas Plant at a Poultry Farm. J. Ecol. Eng., 20, 225–31. doi:10.12911/22998993/114090.
  • 30. Jurgutis L., Šlepetienė A., Šlepetys J., Cesevičienė J. 2021. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies, 14, 4272. doi:10.3390/EN14144272.
  • 31. Kool A., Marinussen M., Blonk H. 2012. LCI Data for the Calculation Tool Feed Print for Greenhouse Gas Emissions of Feed Production and Utilization: GHG Emissions of N, P, and K Fertilizer Production. Blonk Consultants. Available online: https://blonksustainability.nl/news-and-publications/publications (accessed on 1 December 2022).
  • 32. Koszel M., Parafiniuk S., Szparaga A., Bochniak A., Kocira S., Atanasov A.Z., Kovalyshyn S. 2020. Impact of Digestate Application as a Fertilizer on the Yield and Quality of Winter Rape Seed. Agronomy, 10, 878. doi: 10.3390/agronomy10060878.
  • 33. Martín Sastre C., Barro R., González-Arechavala Y., Santos-Montes A., Ciria P. 2021. Life Cycle Assessment and Soil Nitrogen Balance of Different N Fertilizers for Top Dressing Rye as Energy Crop for Electricity Generation. Agron., 11, 844. doi:10.3390/agronomy11050844.
  • 34. Mazur K., Roman K., Wardal W.J., Borek K., Barwicki J., Kierończyk M. 2021. Emission of harmful gases from animal production in Poland. Environ. Monit. Assess., 193. doi:10.1007/S10661-021-09118-7.
  • 35. Mazurkiewicz J. 2022. Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis. Energies, 15, 8867. doi:10.3390/en15238867.
  • 36. Menegat S., Ledo A., Tirado R. 2022. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Reports, 12, 1–13. doi:10.1038/s41598-022-18773-w.
  • 37. Nguyen A.D., Nguyen V.B., Doan C.T., Petraityte D., Arlauskiene A., Ceseviciene J. 2022. Use of Digestate as an Alternative to Mineral Fertilizer: Effects on Soil Mineral Nitrogen and Winter Wheat Nitrogen Accumulation in Clay Loam. Agron, 12, 402. doi:10.3390/agronomy12020402.
  • 38. Piechota G., Igliński B. 2021. Biomethane in Poland – Current Status, Potential, Perspective and Development. Energies, 14, 1517. doi:10.3390/en14061517.
  • 39. Piszcz H., Piotrowski S., Milczarek A. 2022. Cost analysis of feed production and feeding of beef cattle on the example of a selected individual farm. Acta Sci. Pol. Zootech.21, 17–28. doi:10.21005/asp.2022.21.1.03.
  • 40. PN-EN ISO 18134-3:2015-11. Solid biofuels - Determination of moisture content - Drying method - Part 3: Moisture in a sample for general analysis.
  • 41. PN-EN 15935:2013-02. Sewage sludge, treated biowaste, soil and waste - Determination of loss on ignition.
  • 42. Pochwatka P., Kowalczyk-Juśko A., Sołowiej P., Wawrzyniak A., Dach J. 2020. Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. Energies, 13, 6058. doi:10.3390/en13226058.
  • 43. Proskynitopoulou V., Lorentzou S., Yaman R., Herbert B., Rincon F.J.R., Plakas K., Kougias P., Zouboulis A., Panopoulos K. 2022. Sustainable Sustainable Exploitation of Biogas Plant Digestate for the Production of High-Quality Products Using Selective Electrodialysis. Environ. Sci. Proc., 21, 75. doi:10.3390/environsciproc2022021075.
  • 44. Renewable Energy Sources. Polish Low Act, Dz. U. 2015, 478.
  • 45. Rybak A., Joostberens J., Manowska A., Pielot J. 2022. The Impact of Environmental Taxes on the Level of Greenhouse Gas Emissions in Poland and Sweden. Energies, 15, 4465. doi:10.3390/en15124465.
  • 46. Schnitkey G., Paulson N., Zulauf C., Swanson K., Colussi J. Baltz J. 2022. Nitrogen Fertilizer Prices and Supply in Light of the Ukraine-Russia Conflict. Farmdoc daily (12):45, Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, April 5, 2022.
  • 47. Szymańska M., Sosulski T., Szara E., Pilarski K. 2015. Conversion and properties of anaerobic digestates from biogas production. Przem. Chem. 94/8, 1419-1423. doi: 10.15199/62.2015.8.35.
  • 48. Tiefenbacher A., Sandén T., Haslmayr H.P., Miloczki J., Wenzel W., Spiegel H. 2021. Optimizing carbon sequestration in croplands: A synthesis. Agronomy, 11, 882. doi:10.3390/agronomy11050882/S1.
  • 49. Tilvikiene V., Venslauskas K., Povilaitis V., Navickas K., Zuperka V., Kadziuliene Z. 2020. The effect of digestate and mineral fertilisation of cocksfoot grass on greenhouse gas emissions in a cocksfoot-based biogas production system. Energy Sustain. Soc., 10, 1–15. doi:10.1186/S13705-020-00245-6/tables/8.
  • 50. Tiwary A., Williams I.D., Pant D.C., Kishore V.V.N. 2015. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate. Environmental Pollution 203, 262-270. Doi: 10.1016/j.envpol.2015.02.001.
  • 51. van der Linden A., de Olde E.M., Mostert P.F., de Boer I.J.M. 2020. A review of European models to assess the sustainability performance of livestock production systems. Agric. Syst., 182, 102842. doi:10.1016/j.agsy.2020.102842.
  • 52. Wu H., MacDonald G.K., Galloway J.N., Zhang L., Gao L., Yang L., Yang J., Li X., Li H., Yang T. 2021. The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: A partial lifecycle assessment of fertilizer production and use in China. Resour. Conserv. Recycl., 168, 105303. doi:10.1016/j.resconrec.2020.105303.
  • 53. Zeshan C. Visvanathan 2014. Evaluation of anaerobic digestate for greenhouse gas emissions at various stages of its management. International Biodeterioration & Biodegradation, 95, 167-175. doi: 10.1016/j.ibiod.2014.06.020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4355797-1500-4b0f-9332-acdc53dc1e25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.