PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risks of Soil Pollution with Toxic Elements During Military Actions in Lviv

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Considering that approximately 20% of the nation’s land remains under the occupation of Russian forces, assessing the impact of the invasion in the midst of ongoing conflict is a formidable challenge. However, even the limited available data offers a distressing glimpse into an ecological catastrophe. The detonation of rockets and artillery shells leads to the generation of a variety of chemical compounds containing elements such as zinc (Zn), copper (Cu), lead (Pb), chromium (Cr), nickel (Ni), and cadmium (Cd). The primary goal of this research was to ascertain the presence of potentially hazardous elements (PTE) within the soil in areas subjected to targeted rocket attacks within the Lviv districts. Soil samples were gathered from four locations in the city of Lviv, which had been impacted by rocket fire, using a concentric circle sampling methodology. Two distinct instrumental techniques, namely X-ray fluorescence spectroscopy (XRF) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), were employed to quantify the concentration of heavy metals within the soil samples. Results revealed that all soil samples exhibited a significant exceedance of the maximum allowable concentrations for titanium (Ti), zinc (Zn), lead (Pb), and nickel (Ni). To assess the leachability and bioavailability of these elements within the soil, various extraction methods were applied in aqueous conditions and in the presence of ammonium citrate. The latter method demonstrated high effectiveness in extracting zinc (Zn), copper (Cu), chromium (Cr), and cadmium (Cd) from the soil. The level of soil contamination was evaluated using diverse criteria, including the contamination factor (Cf), the environmental risk factor (Er), the potential environmental risk index (Ri), the geoaccumulation index (Igeo), and the environmental risk factor (NIPI – National Iron plus Initiative). The computed cumulative environmental impact of all elements (NIPI = 49.001 and NIRI = 54.941, National Investor Relations Institute) underscores the substantial pollution within the surveyed area.
Rocznik
Strony
195--208
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, S. Bandery Str. 12, 79013 Lviv, Ukraine
  • Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, S. Bandery Str. 12, 79013 Lviv, Ukraine
  • Department of Advance Materials Technologies, Wroclaw University of Science and Technology, C. K. Norwida Str. 4/6, 50-373 Wroclaw, Poland
  • Department of Advance Materials Technologies, Wroclaw University of Science and Technology, C. K. Norwida Str. 4/6, 50-373 Wroclaw, Poland
  • Department of Advance Materials Technologies, Wroclaw University of Science and Technology, C. K. Norwida Str. 4/6, 50-373 Wroclaw, Poland
Bibliografia
  • 1. Alengebawy A., Abdelkhalek S.T., Qureshi, S.R., Wang, M.-Q. 2021. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 42. https://doi.org/10.3390/toxics9030042
  • 2. Bausinger T., Bonnaire, E., Preuss, J. 2007. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun. Science of The Total Environment, 382(2–3), 259–271. https://doi.org/10.1016/j.scitotenv.2007.04.029
  • 3. Bordeleau G., Martel R., Ampleman G., Thiboutot S. 2008. Environmental Impacts of Training Activities at an Air Weapons Range. Journal of Environmental Quality, 37, 308–317. https://doi.org/10.2134/jeq2007.0197
  • 4. Broomandi P., Guney M., Kim, J.R., Karaca F. 2020. Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12, 9002. https://doi.org/10.3390/su12219002
  • 5. Certini G., Scalenghe R., Woods W.I. 2013. The impact of warfare on the soil environment. Earth-Science Reviews, 127, 1–15. https://doi.org/10.1016/j.earscirev.2013.08.009
  • 6. Dinake P., Kelebemang R., Sehube N., Kereeditse T., Motswetla, O. 2020. Dynamic risk assessment of lead pollution of shooting range soil by applying the delayed geochemical hazard model—A case study in Botswana. Soil and Sediment Contamination: An International Journal, 29, 503–515. http://dx.doi.org/10.1080/15320383.2020.1747812
  • 7. Disposicion del Diario Oficial de Galicia (DOG) 2009. Decreto 60/2009, de 26 de Febrero, Sobre Suelos Potencialmente Contaminados y Procedimiento para la Declaración de Suelos Contaminados; DOG: Galicia, Spain.
  • 8. Denton G.R.W., Emborski C.A., Hachero A.A.B., Masga R.S., Starmer J.A. 2016. Impact of WWII dumpsites on Saipan (CNMI): Heavy metal status of soils and sediments. Environmental Science and Pollution Research, 23, 11339–11348. https://doi.org/10.1007/s11356-016-6603-7
  • 9. Dong X., Li C., Li J., Wang J., Liu S., Ye B. 2010. A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption. Journal of Hazardous Materials, 175(1-3), 1022–1030. https://dx.doi.org/10.1016/j.jhazmat.2009.10.112
  • 10. Dmytruk Y., Cherlinka V., Cherlinka L., Dente D. 2023. Soils in war and peace. International Journal of Environmental Studies, 80(2), 380–393. https://doi.org/10.1080/00207233.2022.2152254
  • 11. Gebka K., Beldowski J., Beldowska M. 2016. The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environmental Science and Pollution Research, 23, 23103–23113. https://doi.org/10.1007/s11356-016-7436-0
  • 12. Golubtsov O., Sorokina A., Sploditel S. 2023. The impact of Russia’s war against Ukraine on the state of Ukrainian soils. Analysis results. Kyiv: NGO “Ekodiya Center for Environmental Initiatives”. Retrieved from https://ecoaction.org.ua/wp-content/uploads/2023/03/zabrudnennia-zemel-vidrosii-summary1.pdf Environment of Lviv region 2018. Retrieved from http://lv.ukrstat.gov.ua/ukr/publ/2019/ZB2420190101.pdf
  • 13. Fang H., Yinghui Z., Wei S., Wenjuan Li, Yongchang Ye, Sun Tao, Liu Weiwei 2019. The field measurements and high resolution reference LAI data in Hailun and Honghe, China. PANGAEA. https://doi.org/10.1594/PANGAEA.900090
  • 14. Hakanson L. 1980. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://dx.doi.org/10.1016/0043-1354(80)90143-8
  • 15. Hettiarachchi G.M., Pierzynski G.M. 2004. Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environmental Progress, 23(1), 78–93. https://doi.org/10.1002/EP.10004
  • 16. Knechtenhofer L.A., Xifra I.O., Scheinost A.C., Flühler H., Kretzschmar R. 2003. Fate of heavy metals in a strongly acidic shooting-range soil: Small-scale metal distribution and its relation to preferential water flow. Journal of Plant Nutrition and Soil Science, 166, 84–92. https://doi.org/10.1002/jpln.200390017
  • 17. Lafond S., Blais J.F., Martel R., Mercier G. 2012. Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil. Water, Air, & Soil Pollution, 224, 1371. https://doi.org/10.1007/s11270-012-1371-6
  • 18. Lafond S., Blais J.F., Mercier G., Martel R.A. 2014. Counter-Current Acid Leaching Process for the Remediation of Contaminated Soils from a Small-Arms Shooting Range. Soil and Sediment Contamination: An International Journal, 23(2), 194–210. https://doi.org/10.1080/15320383.2014.808171
  • 19. Ligazakon 2023. Geneva Convention on the protection of the civilian population during the war. Retrieved from https://ips.ligazakon.net/document/MU49006
  • 20. Liu S., Ni L., Chen W., Wang J., Ma F. 2020. Analysis of lead forms and transition in agricultural soil by nano-fluorescence method. Journal of Hazardous Materials, 389, 121469. https://doi.org/10.1016/J.JHAZMAT.2019.121469
  • 21. Meerschman E., Cockx L., Islam M. M., Meeuws F., van Meirvenne M. 2011. Geostatistical Assessment of the Impact of World War I on the Spatial Occurrence of Soil Heavy Metals. AMBIO, 40, 417–424. https://doi.org/10.1007/s13280-010-0104-6
  • 22. Men C., Liu R., Xu L., Wang Q., Guo L., Miao Y., Shen Z. 2019. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. Journal of Hazardous Materials, 388, 121763. https://doi.org/10.1016/j.jhazmat.2019.121763
  • 23. Mugoša B., Đurović D., Nedović-Vuković M., Barjaktarović-Labović S., Vrvić, M. 2016. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro. International Journal of Environmental Research and Public Health, 13(4), 393. https://doi.org/10.3390/ijerph13040393
  • 24. Neuter R., Stolnykovych H., Nivyevskyi O. 2022. Review of losses from agricultural wars in Ukraine. Quick damage assessment. KSE, Food and Land Use Research Center of the Kyiv School of Economics of the Ministry of Agrarian Policy and Food of Ukraine.
  • 25. Okkenhaug G., Gebhardt K.-A.G., Amstaetter K., Bue H., Herzel H., Mariussen E., Rossebo A.A., Cornelissen G., Breedveld G.D., Rasmussen G. 2016. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. Journal of Hazardous Materials, 307, 336–343. https://doi.org/10.1016/j.jhazmat.2016.01.005
  • 26. Pichtel J. 2016. Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Applied and Environmental Soil Science, 2012, 617236. https://doi.org/10.1155/2012/617236
  • 27. Pekey H., Karakaş D., Ayberk S., Tolun L., Bakoǧlu M. 2004. Ecological risk assessment using trace elements from surface sediments of İzmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–14), 946–953. https://dx.doi.org/10.1016/j.marpolbul.2003.11.023
  • 28. Pereira P., Bashych F., Bohunovych I., Barcelo D. 2022. The Russian-Ukrainian war affects the general environment. Science of the Total Environment, 837, 155865. https://doi.org/10.1016/j.scitotenv.2022.155865
  • 29. Petrushka K., Petrushka I. 2023. Influence of heavy metals oxides on the pollution of the soil environment as a consequence of military actions. Environmental Problems, 8(2), 87–93. https://doi.org/10.23939/ep2023.02.087
  • 30. Petrushka K., Petrushka I., Yukhman Y. 2023. Assessment of the impact of military actions on the soil cover at the explosion site by the nemerov method and the pearson coefficient case study of the city of Lviv. Journal of Ecological Engineering, 24(10), 77–85. https://doi.org/10.12911/22998993/170078
  • 31. Rajapaksha A.U., Ahmad M., Vithanage M., Kim K.R., Chang J. Y., Lee S.S., Ok Y.S. 2015. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 37, 931–942. https://doi.org/10.1007/s10653-015-9694-z
  • 32. Rodríguez-Seijo A., Alfaya Maria C., Andrade M.L., Vega, F.A. 2016. Copper, Chromium, Nickel, Lead and Zinc Levels and Pollution Degree in Firing Range Soils. Land Degradation & Development, 27(7), 1721-1730. https://doi.org/10.1002/ldr.2497
  • 33. Sladkova A., Szakova J., Havelcova M., Najmanova J., Tlustos P. 2015. The Contents of Selected Risk Elements and Organic Pollutants in Soil and Vegetation within a Former Military Area. Soil and Sediment Contamination: An International Journal, 24, 325–342. https://doi.org/10.1080/15320383.2015.955605
  • 34. Tuhy Ł., Samoraj M., Chojnacka K. 2013. Evaluation of nutrients bioavailability from fertilizers in in vitro tests. Interdisciplinary Journal of Engineering Sciences, 1(1), 4–9. https://doi.org/10.5277/ijes_pwr
  • 35. Tomic N.T., Smiljanic S., Jovic M., Gligoric M.. Povrenovic D., Dosic, A. 2018. Examining the Effects of the Destroying Ammunition, Mines, and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit: Part 1-Pseudo-total Concentration. Water, Air, & Soil Pollution, 229, 301. https://doi.org/10.1007/s11270-018-3957-0
  • 36. Wang L., Wang Y., Zhang W., Xu C., An Z. 2014. Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Sciences, 71, 1183–1193. https://dx.doi.org/10.1007/s12665-013-2522-9
  • 37. Wang Y., Xu W., Li J., Song Y., Hua M., Li W., Wen Y., Li T., He X. 2022. Assessing the fractionation and bioavailability of heavy metals in soil–rice system and the associated health risk. Environmental Geochemistry and Health, 44(2), 301–318. https://doi.org/10.1007/S10653-021-00876-4/FIGURES/6
  • 38. Wieczorek J., Baran A., Bubak A. 2023. Mobility, bioaccumulation in plants, and risk assessment of metals in soils. Science of The Total Environment, 882, 163574. https://doi.org/10.1016/J.SCITOTENV.2023.163574
  • 39. Yang Z., Lu W., Long Y., Bao X., Yang, Q. 2011. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108, 27–38. https://dx.doi.org/10.1016/j.gexplo.2010.09.006
  • 40. Xu Yi, Liang X., Xu Y., Qin Xu, Huang Q., Wang L., Sun Y. 2017. Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere, 27, 193–204. https://doi.org/10.1016/S1002-0160(17)60310-2/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f42f5d7d-6d72-4818-9cb6-c7142d5e687f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.