PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Work hardening of Ni‑based single crystal alloy in vibration grinding based on molecular dynamics method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the work hardening of nickel-based superalloy during vibration-assisted grinding using cubic boron nitride (CBN) tool, a vibration-assisted grinding model of nickel-based superalloy was established by means of molecular dynamics (MD) simulation. Through in-depth analysis of dislocation proliferation and movement within the workpiece, the influence of internal obstacles on dislocation movement and the interaction between dislocations, we can understand the mechanism of work hardening. The effect of vibration grinding on the work hardening of nickel-based superalloys was studied by comparing the changes of external stress and dislocation density in the workpiece under vibration-assisted grinding and conventional grinding. The research shows that as the plastic deformation of the workpiece increases, the number and types of dislocations inside the workpiece also continue to increase, leading to a large amount of interaction between dislocations, resulting in the generation of obstacles such as dislocation jog, dislocation entanglement, and dislocation accumulation. These obstacles promote the occurrence of work hardening in the workpiece. The stress and dislocation density of nickel-based superalloy during vibration grinding are lower than that of conventional grinding, and the softening effect of vibration grinding significantly reduces the work hardening phenomenon of the workpiece.
Rocznik
Strony
art. no. e39, 2024
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
autor
  • School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
autor
  • School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
Bibliografia
  • 1. Darolia R. Development of strong, oxidation and corrosion resist-ant nickel-based superalloys: critical review of challenges, progress and prospects[J]. Int Mater Rev. 2019;64(6):355–80.
  • 2. Cao Y, Ding W, Zhao B, Wen X, Li S, Wang J. Effect of intermittent cutting behavior on the ultrasonic vibration-assisted grinding performance of inconel718 nickel-based superalloy [J]. Precis Eng. 2022;78:248–60.
  • 3. Bhaduri D, Soo SL, Aspinwall DK, Donka N, Peter MH, Bohr S,Durisin M. A study on ultrasonic assisted creep feed grinding of nickel based superalloys [J]. Procedia Cirp. 2012;1:359–64.
  • 4. Yang C, Zhu Y, Ding W, Qiu Y, Wang L, Xu J. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of inconel 718 nickel-based superalloy [J].Chin J Aeronaut. 2022;35:332–45.
  • 5. Yuan S, Xiao M. Experimental study on the mechanism of axial ultrasonic-assisted grinding [J]. Adv Mater Res.2012;490–495:2449–53.
  • 6. Qiu B, Zhu Y, Ding W. An investigation on material removal mechanism in ultra-high-speed grinding of nickel-based superal-loy: three-dimensional simulation and experimental verification[J]. Int J Adv Manuf Technol. 2020;110:919–33.
  • 7. Yang L, Chu C-H, Fu Y, Xu J, Liu Y-T. cfrp grinding wheels for high speed and ultra-high speed grinding: a review of current technologies and research strategies [J]. Int J Precis Eng Manufact.2015;16:2599–606.
  • 8. Yin Y, Zhang J, Ma Y, Huo J, Zhao K, Meng X, Han Q, YinJ. Electrochemical dissolution behavior of nickel-based has-telloy X superalloy at low current densities [J]. IEEE Access.2020;8:62714–24.
  • 9. Ni S, Wang Y, Liao X, Alhajeri SN, Li H, Zhao Y, Lavernia EJ, Ringer SP, Langdon TG, Zhu Y. Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation [J]. Mater Sci Eng A Struct Mater Prop Microstruct Process.2011;528:3398–403.
  • 10. Niewczas M. Chapter 75 Dislocations and twinning in face centredcubic crystals [J]. Dislocat Solids. 2007;13:263–364.
  • 11. Fan YH, Wang WY, Hao ZP, Zhan CY. Work hardening mechanism based on molecular dynamics simulation in cutting Ni–Fe–Cr series of ni-based alloy [J]. J Alloys Compds. 2020;819:153331.
  • 12. Mishra DK, Meraj M, Badjena SK, Snehanshu P. Structural evolution and dislocation behaviour study during nanoindentation of Mo20w20co20ta20zr20 high entropy alloy coated Ni single crystal using molecular dynamic simulation [J]. Mol Simul.2019;45:572–84.
  • 13. Martin G, Ochoa N, Sai K, Herve-Luanco E, Cailletaud G. A multiscale model for the elastoviscoplastic behavior of directionally solidified alloys: application to Fe structural computations[J]. IntJ Solids Struct. 2014;51(5):1175–87.
  • 14. Wang HP, Zheng CH, Zou PF, Yang SJ, Hu L, Wei BQ. Density determination and simulation of Inconel 718 alloy at normal and metastable liquid states[J]. J Mater Sci Technol.2018;34(3):436–9.
  • 15. Hao Z, Zhang H, Fan Y. Mechanical response of nanoindentation and material strengthening mechanism of Nt-Cbn superhard materials based on molecular dynamics [J]. Int J Refract Metals Hard Mater. 2022;106:105844.
  • 16. Los JH, Kroes JMH, Albe K, Gordillo RM, Katsnelson MI, Fasolino A. Extended Tersoff potential for boron nitride: energetics and elastic properties of pristine and defective H-Bn [J].Phys Rev B. 2017;96: 184108.
  • 17. Huang C (2019) Superhard nanostructures cBN and diamond Research on mechanical properties and deformation mechanism[D]. Chongqing University.
  • 18. Wang Y, Tang SH, Guo J. Molecular dynamics study on deformation behaviour of monocrystalline gan during nano abrasive machining [J]. Appl Surf Sci. 2020;510: 145492.
  • 19. Yang DZ. Dislocation and metal strengthening mechanisms [M].Harbin: Harbin Institute of Technology Press; 1991.
  • 20. Hao ZP, Lou ZZ, Fan YH. Study on staged work hardening mechanism of nickel-based single crystal alloy during atomic and close-to-atomic scale cutting-sciencedirect [J]. Precis Eng.2021;68:35–56.
  • 21. Dupraz M, Sun Z, Brandl C, Swygenhoven HV. Dislocation interactions at reduced strain rates in atomistic simulations of nanocrystalline Al [J]. Acta Mater. 2018;144:68–79.
  • 22. Fan LY. Study on phase transformation in cutting ni-base superal-loy based on molecular dynamics method [J]. Proc Inst Mech EngC J Mech Eng Sci. 2020;235:2065–86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f42deca2-807a-4afc-9edf-2d13ada92413
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.