Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Renewable energy sources are increasingly common in Poland, and a growing number of single-family houses are now equipped with such systems. The article presents the study of the performance of the heat pump and the photovoltaic system installed in a house in the Swietokrzyskie Province near the city of Kielce. The data related to thermal and electrical energy generation throughout three years has been analysed with a focus on the advantages offered by such systems in the climate conditions of Central Poland. It turned out that 2022 was the best year for electricity production because it exceeded the value of 8000 kWh, and in the winter period from November to February, energy production balances at 200-300 kWh, which proves the high efficiency of panels for electricity production even in unfavourable climatic conditions. The heat pump generates the smallest energy production to heat the house in the summer, while in the winter, this production increases intensively due to the heating season in Poland. These are values from 1500 kWh to values above 3000 kWh. Similarly, in the case of domestic hot water, these values are higher in winter than in summer. Additionally, the work includes electricity consumption before and after the installation of renewable energy sources. Simplified economic analysis has also been presented in the paper. The simple payback period is estimated at approximately 9 years.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
74--83
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
autor
- Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, Ostrava-Poruba, Czech Republic
autor
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
autor
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
Bibliografia
- Al-Qudah, Hamzah, E., Fadlallah, Sulaiman, O. (2021). Techno-economic analysis of PV-based power systems for Cape York, Australia. The University of Auckland. Conference contribution. https://doi.org/10.17608/k6.auckland.13578182.v2
- Amanowicz, Ł. (2020). Controlling the thermal power of a wall heating panel with heat pipes by changing the mass flowrate and temperature of supplying water—experimental investigations. Energies, 13, 6547. https://doi.org/10.3390/en13246547
- Amanowicz, Ł. (2021). Peak power of heat source for domestic hot water preparation (DHW) for residential estate in Poland as a representative case study for the climate of Central Europe. Energies, 14, 8047. https://doi.org/10.3390/en14238047
- Berardi, U., Jones, S. (2022). The efficiency and GHG emissions of air source heat pumps under future climate scenarios across Canada. Energy and Buildings, 262, 112000. https://doi.org/10.1016/j.enbuild.2022.112000
- Chwieduk, B., Chwieduk, D. (2021). Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions. Renewable Energy, 165, 117-126. https://doi.org/10.1016/j.renene.2020.11.026
- Deshko, V., Bilous, I., Buyak, N., Naumchuk, O. (2023). Prospects for the Use of Renewable Energy Sources while Increasing the Energy Efficiency Level of Office Buildings to the Level of nZEB. Rocznik Ochrona Śrdowiska, 25, 148-158. https://doi.org/10.54740/ros.2023.015
- Dermentzis, G., Ochs, F., Franzoi, N. (2021). Four years monitoring of heat pump, solar thermal and PV system in two net-zero energy multi-family buildings. Journal of Building Engineering, 43, 103199. https://doi.org/10.1016/j.jobe.2021.103199
- Dudkiewicz, E., Fidorów-Kaprawy, N. (2020). Hybrid domestic hot water system performance in industrial hall. Resources, 9, 65. https://doi.org/10.3390/resources9060065
- Dudkiewicz, E., Szałański, P. (2019). A review of heat recovery possibility in flue gases discharge system of gas radiant heaters. Proc. of Int. Conf. on Advances in Energy Systems and Environmental Engineering (ASEE19). E3S Web of Conferences, 116, 00017. https://doi.org/10.1051/e3sconf/201911600017
- Emanuel, M., Akinyele, D., Rayudu, R. (2017). Techno-economic analysis of a 10 kWp utility interactive pho-tovoltaic system at Maungaraki school, Wellington, New Zealand. Energy, 120, 573-583. https://doi.org/10.1016/j.energy.2016.11.107
- Flir Systems (2012), Technical Data Flir E30bx
- Kotrys-Działak, D., Stokowiec, K. (2023). Temperature Distribution Analysis on the Surface of the Radiator: Infrared Camera and Thermocouples Results Comparison. Rocznik Ochrona Środowiska, 25, 37-44. https://doi.org/10.54740/ros.2023.005
- Krawczyk, N., Dębska, L., Piotrowski, J. Zb., Honus, S., Majewski, G. (2023). Validation of the Fanger Model and Assessment of SBS Symptoms in the Lecture Room. Rocznik Ochrona Środowiska, 25, 68-76. https://doi.org/10.54740/ros.2023.008
- Lu, Z., Ziviani, D. (2022). Operating cost comparison of state-of-the-art heat pumps in residential buildings across the United States. Energy and Buildings, 277, 112553. https://doi.org/10.1016/j.enbuild.2022.112553
- Marijanovic, Z., Theile, P., Czock, BH. (2022). Value of short-term heating system flexibility – A case study for residential heat pumps on the German intraday market. Energy, 249, 123664. https://doi.org/10.1016/j.energy.2022.123664
- Miravet-Sanchez, BL., Garcia-Rivero, AE., Yuli-Posadas, RA., Inostroza-Ruiz, LA., Fernandez-Guzman, V., Chavez-Juanito, YA., Rutti-Marin, JM., Apesteguia-Infantes, JA. (2022). Solar photovoltaic technology in isolated rural communities in Latin America and the Caribbean. Energy Reports, 8, 1238-1248. https://doi.org/10.1016/j.egyr.2021.12.052
- Niekurzak, M., Lewicki, W., Drożdż, W., Miązek, P. (2022). Measures for Assessing the Effectiveness of In-vestments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household. Energies, 15(16), 6089. https://doi.org/10.3390/en15166089
- Nogaj, K., Turski, M., Sekret, R. (2017). The influence of using heat storage with PCM on inlet and outlet temperatures in substation in DHS. Proc of Int. Conf. on Advances in Energy Systems and Environmental En-gineering (ASEE17), Wrocław, Poland, July 2-5, 2017, E3S Web of Conferences, 22, 00124. https://doi.org/10.1051/e3sconf/20172200124
- Nowak, A. (2024). Analiza zastosowania systemów OZE w budynku mieszkalnym jednorodzinnym (diploma dissertation). Kielce University of Technology. (in Polish)
- Orłowska, M. (2023). Thermomodernization – Rescue for the Building. Rocznik Ochrona Środowiska, 25, 208-214. https://doi.org/10.54740/ros.2023.020
- Orman, Ł.J. (2014). Boiling heat transfer on single phosphor bronze and copper mesh microstructures. Proc of Int. Conf. "EFM13 – Experimental Fluid Mechanics 2013" (Czech Republic), EPJ Web of Conferences, 67, 02087. https://doi.org/10.1051/epjconf/20146702087
- Orman, Ł.J., Chatys, R. (2011). Heat transfer augmentation possibility for vehicle heat exchangers. Proc. of 15th Int. Conf. "TRANSPORT MEANS" (Kaunas, Lithuania). 9-12.
- Patsch, M., Pilát, P. (2018). Simulation of Combustion Air Flow in the Gasification Biomass Boiler. Proc of XXI. Int. Conf. "The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy 2018", MATEC Web of Conferences, 168, 02015, https://doi.org/10.1051/matecconf/201816802015
- Pavlenkо, A., Szkarowski, A. (2018). Thermal insulation materials with high-porous structure based on the soluble glass and technogenic mineral fillers. Rocznik Ochrona Środowiska, 20, 725-740.
- Pavlenko, A., Szkarowski, A., Janta-Lipińska, S. (2014). Research on Burning of Water Black Oil Emulsions. Rocznik Ochrona Środowiska, 16(1), 376-385.
- Radek, N., Pietraszek, J., Gądek-Moszczak, A., Orman, Ł.J., Szczotok, A. (2020). The Morphology and Me-chanical Properties of ESD Coatings before and after Laser Beam Machining. Materials, 13, 2331. https://doi.org/10.3390/ma13102331
- Ramirez-Sagner, G., Mata-Torres, C., Pino, A., Escobar, RA. (2017). Economic feasibility of residential and commercial PV technology: The Chilean case. Renewable Energy, 111, 332-343. https://doi.org/10.1016/j.renene.2017.04.011
- Ratajczak, K., Amanowicz, Ł., Pałaszyńska, K., Pawlak, F., Sinacka, J. (2023). Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review. Energies, 16, 6254. https://doi.org/10.3390/en16176254
- Rej-Witt, M., Dębska, L. (2022). The use of a photovoltaic system in a single family house in Poland – case study. E3S Web of Conference, 336, 00010. https://doi.org/10.1051/e3sconf/202233600010
- Schreurs, T., Madani, H., Zottl, A., Sommerfeldt, N., Zucker, G. (2021). Techno-economic analysis of combined heat pump and solar PV system for multi-family houses: An Austrian case study. Energy Strategy Reviews, 36, 100666. https://doi.org/10.1016/j.esr.2021.100666
- Shah, A., Krarti, M., Huang, J. (2022). Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings. Energies, 15(3), 1025. https://doi.org/10.3390/en15031025
- Stokowiec, K., Wciślik, S., Kotrys-Działak, D. (2023). Innovative modernisation of building heating systems: the economy and ecology of a hybrid district-heating substation. Inventions, 8, 43. https://doi.org/10.3390/inventions8010043
- Turski, M., Jachura, A. (2022). Life cycle assessment of dispersed phase change material heat accumulators for cooperation with buildings in the district heating system. Energies, 15(16), 5771. https://doi.org/10.3390/en15165771
- Vering, C., Maier, L., Breuer, K., Krutzfeldt, H., Streblow, R., Muller, D. (2022). Evaluating heat pump system design methods towards a sustainable heat supply in residential buildings. Applied Energy, 308, 118204. https://doi.org/10.1016/j.apenergy.2021.118204
- Yang, LW., Hua, N., Pu, JH, Xia, Y., Zhou, WB, Xu, RJ, Yang, T., Belyayev, Y., Wang, HS. (2022). Analysis of operation performance of three indirect expansion solar assisted air source heat pumps for domestic heating. Energy Conversation and Management, 252, 115061. https://doi.org/10.1016/j.enconman.2021.115061
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f42b67c6-6c82-4e2c-8700-16694f11dfa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.