PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dam construction material selection by implementing the integrated SWARA–CODAS approach with target-based attributes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The selection of the optimal material in engineering design procedures of any construction project due to the complexity of future circumstances could be considered as a complex problem. Similar complex selection problems can be efficiently implemented with the support of Multiple Attribute Decision Making (MADM) methods. The traditional MADM methods focus both on beneficial or non-beneficial attributes to determine a rank order of feasible alternatives and to select the best one. Nevertheless, like many engineering design problems, some attributes could be assessed based on target values. Therefore, target values of attributes along with beneficial and non-beneficial attributes makes a decision-making method more robust. Despite practical and functional applications of the target-based MADM approaches particularly in engineering design problems, only a few studies have made attempts to implement such methods. The presented study tackles a material selection problem by applying a hybrid decision-making approach supported on the Step-Wise Weight Assessment Ratio Analysis (SWARA) method and COmbinative Dis-tance-based ASsessment (CODAS) technique containing target-based attributes. A case-study concerning the selection of optimal cement material type based on a real-world conceptual dam construction project in Iran has been analyzed by the proposed method considering two categories of attributes, i.e., managerial issues and technical specifications.
Rocznik
Strony
1194--1210
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wykr.
Twórcy
  • Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Hesarak, 1477893855, Tehran, Iran
  • Department of Chemical And Petroleum Engineering, Science and Research Branch, Islamic Azad University, Hesarak, 1477893855, Tehran, Iran
  • Department of Engineering, Faculty of Civil and Industrial Engineering, Sapienza University Of Rome, Via Eudossiana 18, Rome, 00184, Italy
  • Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223, Vilnius, Lithuania
  • Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223, Vilnius, Lithuania
Bibliografia
  • [1] I.A. Jamali, U. Mörtberg, B. Olofsson, M. Shafique, A spatial multi-criteria analysis approach for locating suitable sites for construction of subsurface dams in Northern Pakistan, Water Resour. Manag. 28 (2014) 5157–5174. , http://dx.doi.org/ 10.1007/s11269-014-0800-2.
  • [2] J.A. Jiménez Capilla, J.A. Carrión, E. Alameda-Hernandez, Optimal site selection for upper reservoirs in pump-back systems, using geographical information systems and multicriteria analysis, Renew. Energy 86 (2016) 429–440. , http://dx.doi.org/10.1016/j.renene.2015.08.035.
  • [3] N. Ghasabkolaei, A. Janalizadeh Choobbasti, N. Roshan, S.E. Ghasemi, Geotechnical properties of the soils modified with nanomaterials: a comprehensive review, Arch. Civ. Mech. Eng. 17 (2017) 639–650. , http://dx.doi.org/10.1016/j.acme.2017.01.010.
  • [4] A. Hafezalkotob, A. Hafezalkotob, Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection, J. Ind. Eng. Int. (2016), http://dx.doi.org/10.1007/s40092-016-0176-4.
  • [5] A. Jahan, M. Bahraminasab, K.L. Edwards, A target-based normalization technique for materials selection, Mater. Des. 35 (2012) 647–654. , http://dx.doi.org/10.1016/j.matdes.2011.09.005.
  • [6] A. Ijadi Maghsoodi, A. Kavian, M. Khalilzadeh, W.K.M. Brauers, CLUS-MCDA: a novel framework based on cluster analysis and multiple criteria decision theory in a supplier selection problem, Comput. Ind. Eng. 118 (2018) 409–422. , http://dx.doi.org/10.1016/j.cie.2018.03.011.
  • [7] A. Ijadi Maghsoodi, G. Abouhamzeh, M. Khalilzadeh, E.K. Zavadskas, Ranking and selecting the best performance appraisal method using the MULTIMOORA approach integrated Shannon's entropy, Front. Bus. Res. China 12 (2018) 2, http://dx.doi.org/10.1186/s11782-017-0022-6.
  • [8] A. Hafezalkotob, A. Hafezalkotob, Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications, Mater. Des. 87 (2015) 949–959. , http://dx.doi.org/10.1016/j.matdes.2015.08.087.
  • [9] A. Hafezalkotob, A. Hafezalkotob, Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection, J. Ind. Eng. Int. 13 (2017) 181–198. , http://dx.doi.org/10.1007/s40092- 016-0176-4.
  • [10] A. Ijadi Maghsoodi, M. Mosavat, A. Hafezalkotob, A. Hafezalkotob, Hybrid hierarchical fuzzy group decision- making based on information axioms and BWM: prototype design selection, Comput. Ind. Eng. 127 (2019) 788–804. , http://dx.doi.org/10.1016/j.cie.2018.11.018.
  • [11] M.S. Kirgiz, Advancements in mechanical and physical properties for marble powder-cement composites strengthened by nanostructured graphite particles, Mech. Mater. 92 (2016) 223–234. , http://dx.doi.org/10.1016/j.mechmat. 2015.09.013.
  • [12] M.S. Kirgiz, Advance treatment by nanographite for Portland pulverised fly ash cement (the class F) systems, Compos. Part B Eng. 82 (2015) 59–71. , http://dx.doi.org/10.1016/j.compo sitesb.2015.08.003.
  • [13] H. Xu, J.Y. Sze, A. Romagnoli, X. Py, Selection of phase change material for thermal energy storage in solar air conditioning systems, Energy Procedia 105 (2017) 4281–4288. , http://dx.doi. org/10.1016/j.egypro.2017.03.898.
  • [14] M. Yazdani, New approach to select materials using MADM tools, Int. J. Bus. Syst. Res. 12 (2018) 25, http://dx.doi.org/ 10.1504/IJBSR.2018.088454.
  • [15] A. Hafezalkotob, A. Hafezalkotob, Risk-based material selection process supported on information theory: a case study on industrial gas turbine, Appl. Soft Comput. (2016), http://dx.doi.org/10.1016/j.asoc.2016.09.018.
  • [16] E. Celik, M. Gul, A. Taskin, G. Ali, F. Guneri, A Fuzzy TOPSIS approach based on trapezoidal numbers to material selection problem, Int. J. Inf. Technol. Manag. 19 (2012) 19–30.
  • [17] F. Findik, K. Turan, Materials selection for lighter wagon design with a weighted property index method, Mater. Des. 37 (2012) 470–477. , http://dx.doi.org/10.1016/j.matdes.2012.01.016.
  • [18] H.C. Liu, L.X. Mao, Z.Y. Zhang, P. Li, Induced aggregation operators in the VIKOR method and its application in material selection, Appl. Math. Model. 37 (2013) 6325–6338. , http://dx.doi.org/10.1016/j.apm.2013.01.026.
  • [19] D. Das, S. Bhattacharya, B. Sarkar, Decision-based design-driven material selection: a normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design, Mater. Des. 92 (2016) 787–793. , http://dx.doi.org/10.1016/j.matdes.2015.12.064.
  • [20] A. Rodríguez-Prieto, A.M. Camacho, M.A. Sebastián, Multicriteria materials selection for extreme operating conditions based on a multiobjective analysis of irradiation embrittlement and hot cracking prediction models, Int. J. Mech. Mater. Des. (2017) 1–18. , http://dx.doi.org/10.1007/ s10999-017-9393-2.
  • [21] S.H. Mousavi-Nasab, A. Sotoudeh-Anvari, A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems, Mater. Des. 121 (2017) 237–253. , http://dx.doi.org/10.1016/j.matdes.2017.02.041.
  • [22] D. Zindani, S.R. Maity, S. Bhowmik, S. Chakraborty, A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis, Int. J. Mater. Res. 108 (2017) 345–354. , http://dx.doi.org/10.3139/ 146.111489.
  • [23] S.S. Yang, N. Nasr, S.K. Ong, A.Y.C. Nee, Designing automotive products for remanufacturing from material selection perspective, J. Clean. Prod. 153 (2017) 570–579. , http://dx.doi.org/10.1016/j.jclepro.2015.08.121.
  • [24] S.M. Khoshnava, R. Rostami, A. Valipour, M. Ismail, A.R. Rahmat, Rank of green building material criteria based on the three pillars of sustainability using the hybrid multi criteria decision making method, J. Clean. Prod. 173 (2018) 82–99. , http://dx.doi.org/10.1016/j.jclepro.2016.10.066.
  • [25] M. Radulescu, A. Fedajev, D. Nikolic, Ranking of EU national banking systems using multi-criteria analysis in the light of Brexit, Acta Oecon. 67 (2017) 473–509. , http://dx.doi.org/ 10.1556/032.2017.67.4.1.
  • [26] Y. Wu, C. Xu, Y. Ke, K. Chen, H. Xu, Multi-criteria decision- making on assessment of proposed tidal barrage schemes in terms of environmental impacts, Mar. Pollut. Bull. 125 (2017) 271–281. , http://dx.doi.org/10.1016/j.marpolbul.2017.08.030.
  • [27] S. Amirshenava, M. Osanloo, Mine closure risk management: an integration of 3D risk model and MCDM techniques, J. Clean. Prod. 184 (2018) 389–401. , http://dx.doi.org/10.1016/j. jclepro.2018.01.186.
  • [28] S.A. Jozi, M. Shafiee, N. Moradimajd, S. Saffarian, An integrated Shannon's Entropy-TOPSIS methodology for environmental risk assessment of Helleh protected area in Iran, Environ. Monit. Assess. 184 (2012) 6913–6922. , http://dx. doi.org/10.1007/s10661-011-2468-x.
  • [29] M. Yasser, K. Jahangir, A. Mohmmad, Earth dam site selection using the analytic hierarchy process (AHP): a case study in the west of Iran, Arab. J. Geosci. 6 (2013) 3417–3426. , http://dx. doi.org/10.1007/s12517-012-0602-x.
  • [30] D. Kumar, S.S. Katoch, Sustainability assessment and ranking of run of the river (RoR) hydropower projects using analytical hierarchy process (AHP): a study from Western Himalayan region of India, J. Mt. Sci. 12 (2015) 1315–1333. , http://dx.doi. org/10.1007/s11629-014-3156-4.
  • [31] S.A. Jozi, M.T. Shoshtary, A.R.K. Zadeh, Environmental risk assessment of dams in construction phase using a Multi- Criteria Decision-Making (MCDM) method, Hum. Ecol. Risk Assess. 21 (2015) 1–16. , http://dx.doi.org/10.1080/10807039.2013. 821905.
  • [32] S.R. Khodashenas, N. Yarahmadi, Storage dam's locality placing by MCDM techniques (case study: three dams in Iran), Arab. J. Geosci. 9 (2016), http://dx.doi.org/10.1007/ s12517-016-2636-y.
  • [33] A.H.I. Lee, H.H. Chen, H.Y. Kang, A conceptual model for prioritizing dam sites for tidal energy sources, Ocean Eng. 137 (2017) 38–47. , http://dx.doi.org/10.1016/j.oceaneng.2017.03.039.
  • [34] R. Mostafazadeh, A. Sadoddin, A. Bahremand, V.B. Sheikh, A. Z. Garizi, Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran, Nat. Hazards 87 (2017) 1827–1846. , http://dx.doi.org/10.1007/ s11069-017-2851-1.
  • [35] F. Katal, F. Fazelpour, Multi-criteria evaluation and priority analysis of different types of existing power plants in Iran: an optimized energy planning system, Renew. Energy 120 (2018) 163–177. , http://dx.doi.org/10.1016/j.renene.2017.12.061.
  • [36] V. Keršuliene, E.K. Zavadskas, Z. Turskis, Selection of rational dispute resolution method by applying new Step-Wise Weight Assessment Ratio Analysis (SWARA), J. Bus. Econ. Manag. 11 (2010) 243–258. , http://dx.doi.org/10.3846/Jbem.2010.12.
  • [37] S. Urosevic, D. Karabasevic, D. Stanujkic, M. Maksimovic, An approach to personnel selection in the tourism industry based on the SWARA and the WASPAS methods, Econ. Comput. Econ. Cybern. Stud. Res. 51 (2017) 75–88.
  • [38] A. Mardani, M. Nilashi, N. Zakuan, N. Loganathan, S. Soheilirad, M.Z.M. Saman, O. Ibrahim, A systematic review and meta-analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments, Appl. Soft Comput. J. 57 (2017) 265–292. , http://dx.doi.org/10.1016/j. asoc.2017.03.045.
  • [39] M. Keshavarz Ghorabaee, M. Amiri, E.K. Zavadskas, J. Antucheviciene, A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations, Arch. Civ. Mech. Eng. 18 (2018) 32–49. , http:// dx.doi.org/10.1016/j.acme.2017.04.011.
  • [40] E.K. Zavadskas, Ž. Stevic, I. Tanackov, O. Prentkovskis, A novel multicriteria approach – rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics, Stud. Inform. Control 27 (2018) 97– 106. , http://dx.doi.org/10.24846/v27i1y201810.
  • [41] V. Keršuliene, Z. Turskis, Integrated fuzzy multiple criteria decision making model for architect selection, Technol. Econ. Dev. Econ. 17 (2011) 645–666. , http://dx.doi.org/10.3846/ 20294913.2011.635718.
  • [42] N. Tayyar, M. Durmus, Comparison of Max100, SWARA and pairwise weight elicitation methods, Int. J. Eng. Res. Appl. 7 (2017) 67–78. , http://dx.doi.org/10.9790/9622-0702036778.
  • [43] R.K. Mavi, M. Goh, N. Zarbakhshnia, Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry, Int. J. Adv. Manuf. Technol. 91 (2017) 2401–2418. , http://dx.doi.org/10.1007/s00170-016- 9880-x.
  • [44] G. Jamali, E. Karimi Asl, S. Hashemkhani Zolfani, J. Šaparauskas, Analysing LARG supply chain management comoptitive strategies in iranian cement industries, E+M Ekon. a Manag. 20 (2017) 70–83. , http://dx.doi.org/10.15240/ tul/001/2017-3-005.
  • [45] N. Zarbakhshnia, H. Soleimani, H. Ghaderi, Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria, Appl. Soft Comput. (2018), http://dx. doi.org/10.1016/j.asoc.2018.01.023.
  • [46] A. Ijadi Maghsoodi, A. Ijadi Maghsoodi, A. Mosavi, T. Rabczuk, E. Zavadskas, Renewable energy technology selection problem using integrated H-SWARA-MULTIMOORA approach, Sustainability 10 (2018) 4481, http://dx.doi.org/10.3390/su1012 4481.
  • [47] M. Keshavarz Ghorabaee, E.K. Zavadskas, Z. Turkis, J. Antucheviciene, A new combinative distance-based assessment (CODAS) method for multi-criteria decision- making, Econ. Comput. Econ. Cybern. Stud. Res. 50 (2016) 25–44.
  • [48] J.H. Dahooei, E.K. Zavadskas, A.S. Vanaki, H.R. Firoozfar, M. Keshavarz-Ghorabaee, An evaluation model of business intelligence for enterprise systems with new extension of CODAS (CODAS-IVIF), E a M Ekon. a Manag. 21 (2018) 171–187. , http://dx.doi.org/10.15240/tul/001/2018-3-011.
  • [49] D. Panchal, P. Chatterjee, R.K. Shukla, T. Choudhury, J. Tamosaitiene, Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry, Econ. Comput. Econ. Cybern. Stud. Res. 51 (2017) 179–196.
  • [50] E. Bolturk, Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm, J. Enterp. Inf. Manag. 31 (2018) 550–564. , http://dx.doi.org/10.1108/JEIM-01- 2018-0020.
  • [51] D. Pamucar, S. Sremac, Ž. Stevic´, G. C´irovic´, D. Tomic´, New multi-criteria LNN WASPAS model for evaluating the work of advisors in the transport of hazardous goods, Neural Comput. Appl. (2019), http://dx.doi.org/10.1007/s00521-018-03997-7.
  • [52] A. Karasan, E. Boltürk, C. Kahraman, A novel neutrosophic CODAS method: selection among wind energy plant locations, J. Intell. Fuzzy Syst. (2019) 1–14. , http://dx.doi.org/ 10.3233/jifs-181255.
  • [53] M. Keshavarz Ghorabaee, M. Amiri, E.K. Zavadskas, R. Hooshmand, J. Antucheviciene, Fuzzy extension of the CODAS method for multi-criteria market segment evaluation, J. Bus. Econ. Manag. 18 (2017) 1–19. , http://dx. doi.org/10.3846/16111699.2016.1278559.
  • [54] P. Zhou, B.W. Ang, K.L. Poh, Comparing aggregating methods for constructing the composite environmental index: an objective measure, Ecol. Econ. 59 (2006) 305–311. , http://dx. doi.org/10.1016/j.ecolecon.2005.10.018.
  • [55] A. Jahan, F. Mustapha, M.Y. Ismail, S.M. Sapuan, M. Bahraminasab, A comprehensive VIKOR method for material selection, Mater. Des. 32 (2011) 1215–1221. , http:// dx.doi.org/10.1016/j.matdes.2010.10.015.
  • [56] Q.L. Zeng, D.D. Li, Y. Bin Yang, VIKOR method with enhanced accuracy for multiple criteria decision making in healthcare management, J. Med. Syst. 37 (2013), http://dx.doi.org/ 10.1007/s10916-012-9908-1.
  • [57] A. Jahan, K.L. Edwards, VIKOR method for material selection problems with interval numbers and target-based criteria, Mater. Des. 47 (2013) 759–765. , http://dx.doi.org/10.1016/j. matdes.2012.12.072.
  • [58] A. Jahan, K.L. Edwards, A state-of-the-art survey on the influence of normalization techniques in ranking: improving the materials selection process in engineering design, Mater. Des. 65 (2015) 335– 342. , http://dx.doi.org/10.1016/j.matdes.2014. 09.022.
  • [59] Y.X. Xue, J.X. You, X.D. Lai, H.C. Liu, An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information, Appl. Soft Comput. J. 38 (2016) 703–713. , http://dx.doi.org/10.1016/j.asoc.2015.10.010.
  • [60] N.P. Suh, S. Sekimoto, Design of thinking design machine, CIRP Ann. 39 (1990) 145–148. , http://dx.doi.org/10.1016/S0007- 8506(07)61022-1.
  • [61] O. Kulak, M.B. Durmusog?lu, C. Kahraman, Fuzzy multi-attribute equipment selection based on information axiom, J. Mater. Process. Technol. 169 (2005) 337–345. , http://dx.doi. org/10.1016/j.jmatprotec.2005.03.030.
  • [62] C. Kahraman, S. Çebi, A new multi-attribute decision making method: hierarchical fuzzy axiomatic design, Expert Syst. Appl. 36 (2009) 4848–4861. , http://dx.doi.org/10.1016/j.eswa.2008.05.041.
  • [63] A. Ijadi Maghsoodi, A. Hafezalkotob, I. Azizi-ari, S. Ijadi Maghsoodi, A. Hafezalkotob, Selection of waste lubricant oil regenerative technology using entropy-weighted risk-based fuzzy axiomatic design approach, Informatica 29 (2018) 41– 74. , http://dx.doi.org/10.15388/Informatica.2018.157.
  • [64] A. Hafezalkotob, A. Hami-Dindar, N. Rabie, A. Hafezalkotob, A decision support system for agricultural machines and equipment selection: a case study on olive harvester machines, Comput. Electron. Agric. 148 (2018) 207–216. , http://dx.doi.org/10.1016/j.compag.2018.03.012.
  • [65] ASTM International, ASTM C114-10 – Standard Test Methods for Chemical Analysis of Hydraulic Cement, B. Stand, vol. 04.01, 2010.
  • [66] D. Veres, A comparative study between loss on ignition and total carbon analysis on minerogenic sediments, Geologia 47 (2002) 171–182. , http://dx.doi.org/10.1017/CBO9781107415324.004.
  • [67] A.S.T.M. C150, Standard Specification for Portland Cement (C150/C150M), ASTM Int. (2017), http://dx.doi.org/10.1520/ C0150_C0150M-17.
  • [68] ASTM, ASTM C150-07 Standard Specification for Portland Cement, ASTM Int. (2007) 1–8. , http://dx.doi.org/10.1520/C0010.
  • [69] M.A. Sanjuán, C. Argiz, Technical note: the new European standard on common cements specifications EN 197-1: 2011, Mater. Constr. 62 (2012), http://dx.doi.org/10.3989/mc.2012.07711.
  • [70] AENOR, UNE-EN 197-1. Cemento Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes, 2011.
  • [71] ASTM International, ASTM C150-04: standard specification for Portland cement, Am. Soc. Test. Mater. 4 (2011) 1–7. , http://dx.doi.org/10.1002/jbm.b.31853.
  • [72] M. Mathew, S. Sahu, Comparison of new multi-criteria decision making methods for material handling equipment selection, Manag. Sci. Lett 8 (2018) 139–150. , http://dx.doi.org/ 10.5267/j.msl.2018.1.004.
  • [73] G. Easton, One case study is enough, in: Acad. Mark. Annu. Conf., 2010, 1–17.
  • [74] B. Flyvbjerg, Five misunderstandings about case-study research, Qual. Inq. 12 (2006) 219–245. , http://dx.doi.org/ 10.1177/1077800405284363.
  • [75] A. Ijadi Maghsoodi, I. Azizi-ari, Z. Barzegar-Kasani, M. Azad, E. Zavadskas, J. Antucheviciene, Evaluation of the Influencing factors on job satisfaction based on combination of PLS-SEM and F-MULTIMOORA approach, Symmetry (Basel) 11 (2019) 24, http://dx.doi.org/10.3390/sym11010024.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4299328-2313-473e-b413-6ba5d1c7a039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.