PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Novel Approach to the Solution of Matrix Games with Payoffs Expressed by Trapezoidal Intuitionistic Fuzzy Numbers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a novel approach to the solution of fuzzy matrix games with payoffs given as trapezoidal intuitionistic fuzzy numbers. We extend Li’s [36, Chapter 9] work based on a cut-set based method for finding an optimal solution to overcome the fact that the assumptions and properties assumed therein do not guarantee in general, first, the very existence of an optimal solution, and second, its attainment via a mathematical programming formulation proposed. We first briefly mention those problems in Li’s [36] approach, and then propose a new, corrected and general method, called the Mehar mehod, based on a modified mathematical pro- gramming formulation of a matrix game with payoffs represented by trapezoid intuitionistic fuzzy numbers. For illustration, we solve Li’s [36] example, and compare his and our results.
Twórcy
autor
  • School of Mathematis and Computer Applications, Thapar University, Patiala, India
autor
  • School of Mathematis and Computer Applications, Thapar University, Patiala, India
autor
  • Systems Research Institute Polish Academy of Sciences, Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
Bibliografia
  • [1] Aggarwal A., Mehra A., Chandra S., “Application of linear programming with I-fuzzy sets to matrix games with I-fuzzy goals”, Fuzzy Optimization and Decision Making, vol. 11, no. 4, 2012, 465–480. DOI: 10.1007/s10700-012-9123-z.
  • [2] Aplak H. S., Turkbey O., “Fuzzy logic based game theory applications in multi-criteria decision making process”, Journal of Intelligent & Fuzzy Systems, vol. 25, no. 2, March 2013, 359–371. DOI: 10.3233/IFS-2012-0642.
  • [3] Atanassov K. T., “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol. 20, no. 1, 1986, 87–96. DOI: 10.1016/S0165-0114(86)80034-3.
  • [4] Aubin J.P., “Cooperative fuzzy game”, Mathematics of Operations Research, vol. 6, no. 1, 1981, 1–13. DOI: 10.1287/moor.6.1.1.
  • [5] Bector C. R., Chandra S., “On duality in linear programming under fuzzy environment“, Fuzzy Sets and Systems, vol. 125, no. 3, 2002, 317–325. DOI: 10.1016/S0165-0114(00)00122-6.
  • [6] Bector C. R., Chandra S., Fuzzy Mathematical Programming and Fuzzy Matrix Games, Berlin: Springer, 2005. DOI: 10.1007/3-540-32371-6.
  • [7] Bector C. R., Chandra S., Vijay V., “Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs”, Fuzzy Sets and Systems, vol. 146, no. 9, 2004, 253–269. DOI: 10.1016/S0165-0114(03)00260-4.
  • [8] Bector C. R., Chandra S., Vijay V., “Matrix games with fuzzy goals and fuzzy linear programming duality”, Fuzzy Optimization and Decision Making, vol. 3, no. 3, 2004, 255–269. DOI: 10.1023/B:FODM.0000036866.18909.f1.
  • [9] Branzei R., Dimitrov D., Tijs S., “Convex fuzzy games and participation monotonic allocation schemes”, Fuzzy Sets and Systems, vol. 139, no. 2, 2003, 267–281. DOI: 10.1016/S0165-0114(02)00510-9.
  • [10] Branzei R., Dimitrov D., Tijs S., “Hypercubes and compromise values for cooperative fuzzy games”, European Journal of Operational Research, vol. 155, no. 3, 2004, 733–740. DOI: 10.1016/S0377-2217(02)00879-2.
  • [11] Buckley J.J., “Multiple goals noncooperative conflict under uncertainty: A fuzzy set approach”, Fuzzy Sets and Systems, vol. 13, no. 2, 1984, 107–124. DOI: 10.1016/0165-0114(84)90012-5.
  • [12] Buckley J.J., Jowers L.J., Monte Carlo Methods in Fuzzy Optimization, Berlin: Springer 2008. DOI: 10.1007/978-3-540-76290-4.
  • [13] Butnariu D., “Fuzzy games: A description of the concept”, Fuzzy Sets and Systems, vol. 1, no. 3, 1978, 181–192. DOI: 10.1016/0165-0114(78)90003-9.
  • [14] Butnariu D., “Stability and Shapley value for n-persons fuzzy game”, Fuzzy Sets and Systems, vol. 4, no. 1, 1980, 63–72. DOI: 10.1016/0165-0114(80)90064-0.
  • [15] Butnariu D., Kroupa T., “Shapley mappings and the cumulative value for n-person games with fuzzy coalitions”, European Journal of Operational Research, vol. 186, no. 1, 2008, 288–299. DOI: 10.1016/j.ejor.2007.01.033.
  • [16] Campos L., “Fuzzy linear programming models to solve fuzzy matrix games”, Fuzzy Sets and Systems, vol. 32, no. 3, 1989, 275–289. DOI: 10.1016/0165-0114(89)90260-1.
  • [17] Campos L., Gonzalez A., “Fuzzy matrix games considering the criteria of the players”, Kybernetes, vol. 20, no. 1, 1991, 17–23. DOI: 10.1108/eb005872.
  • [18] Campos L., Gonzalez A., Vila M.A., “On the use of the ranking function approach to solve fuzzy matrix games in a direct way”, Fuzzy Sets and Systems, vol. 49, no. 2, 1992, 193–203. DOI: 10.1016/0165-0114(92)90324-W.
  • [19] Cevikel A. C., Ahlatcioglu M., “Solutions for fuzzy matrix games”, Computers and Mathematics with Applications, vol. 60, no. 3, 2010, 399–410. DOI: 10.1016/j.camwa.2010.04.020.
  • [20] Chankong V., Haimes Y.Y., Multiobjective Decision Making: Theory and Methodology, New York: Dover Publications, 1983.
  • [21] Chen Y.W., Larbani M., “Two-person zero-sum game approach for fuzzy multiple attribute decision making problems”, Fuzzy Sets and Systems, vol. 157, no. 1, 2006, 34–51. DOI: 10.1016/j.fss.2005.06.004.
  • [22] Clemente M., Fernandez F.R., Puerto J., “Pareto-optimal security in matrix games with fuzzy pay-offs”, Fuzzy Sets and Systems, vol. 176, no. 8, 2011, 36–45. DOI: 10.1016/j.fss.2011.03.006.
  • [23] Collins W.D., Hu C.Y., “Studying interval valued matrix games with fuzzy logic”, Soft Computing, 12, 2008, 147–155. DOI: 10.1007/s00500-007-0207-6.
  • [24] Garagic D., Cruz J.B., “An approach to fuzzy noncooperative nash games”, Journal of Optimization Theory and Applications, vol. 118, no. 3, 2003, 475–491. DOI: 10.1023/B:JOTA.0000004867.66302.16.
  • [25] Hwang C.L., Yoon K., Multi Attribute Decision Making: Methods and Applications, A State of the Art Survey. Berlin: Springer-Verlag, 1981. DOI: 10.1007/978-3-642-48318-9.
  • [26] Ishibuchi H., Tanaka H., “Multiobjective programming in optimization of the interval objective function”, European Journal of Operational Research, vol. 48, no. 2, 1990, 219–225. DOI: 10.1016/0377-2217(90)90375-L.
  • [27] Larbani M., “Non cooperative fuzzy games in normal form: A survey”, Fuzzy Sets and Systems, vol. 160, no. 22, 2009, 3184–3210. DOI: 10.1016/j.fss.2009.02.026.
  • [28] Li D.F.,Fuzzy Multiobjective Many Person Decision Makings and Games, Beijing: National Defense Industry Press, 2003.
  • [29] Li D.F., “A fuzzy multiobjective programming approach to solve fuzzy matrix games”, Journal of Fuzzy Mathematics, vol. 7, 1999, 907–912.
  • [30] Li D.F., “Lexicographic method for matrix games with payoffs of triangular fuzzy numbers”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 16, no. 3, 2008, 371–389. DOI: 10.1142/S0218488508005327.
  • [31] Li D.F., “Mathematical-programming approach to matrix games with payoffs represented by Atanassov’s interval-valued intuitionistic fuzzy sets”, IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, 2010, 1112–1128. DOI: 10.1109/TFUZZ.2010.2065812.
  • [32] Li D.F., “Linear programming approach to solve interval-valued matrix games”, Omega, vol. 39, no. 6, 2011, 655–666. DOI: 10.1016/j.omega.2011.01.007.
  • [33] Li D.F., Notes on “Linear programming technique to solve two-person matrix games with interval pay-offs”, Asia-Pacific Journal of Operational Research, vol. 28, no. 6, 2011, 705–737. DOI: 10.1142/S021759591100351X.
  • [34] Li D.F., “A fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers”, European Journal of Operational Research, vol. 223, no. 2, 2012, 421–429. DOI: 10.1016/j.ejor.2012.06.020.
  • [35] Li D.F., “An effective methodology for solving matrix games with fuzzy payoffs”, IEEE Transactions on Cybernetics, vol. 43, no. 2, 2013, 610–621. DOI:10.1109/TSMCB.2012.2212885.
  • [36] Li D.F., Decision and Game Theory in Management with Intuitionistic Fuzzy Sets, Berlin: Springer-Verlag, 2014. DOI: 10.1007/978-3-642-40712-3.
  • [37] Li D.F., Cheng C.T., “Fuzzy multiobjective programming methods for fuzzy constrained matrix games with fuzzy numbers”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 4, 2002, 385–400. DOI: 10.1142/S0218488502001545.
  • [38] Li D.F., Hong F.X., “Solving constrained matrix games with payoffs of triangular fuzzy numbers”, Computers and Mathematics with Applications, vol. 64, no. 4, 2012, 432–446. DOI: 10.1016/j.camwa.2011.12.009.
  • [39] Li D.F., Hong F.X., “Alfa-cut based linear programming methodology for constrained matrix games with payoffs of trapezoidal fuzzy numbers”, Fuzzy Optimization and Decision Making, vol. 12, no. 2, 2013, 191–213. DOI: 10.1007/s10700-012-9148-3.
  • [40] Li D.F., Nan J.X., “A nonlinear programming approach to matrix games with payoffs of Atanassov’s intuitionistic fuzzy sets”,International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,vol. 17, no. 4, 2009, 585–607. DOI: 10.1142/S0218488509006157.
  • [41] Li D.F., Nan J.X., Tang Z.P., Chen K.J., Xiang X.D., Hong, F.X., “A bi-objective programming approach to solve matrix games with payoffs of Atanassov’s triangular intuitionistic fuzzy numbers”, Iranian Journal of Fuzzy Systems, vol. 9, no. 3, 2012, 93–110.
  • [42] Li D.F., Nan J.X., Zhang M.J., “Interval programming models for matrix games with interval payoffs”,Optimization Methods and Software, vol. 27, no. 1, 2012, 1–16. DOI: 10.1080/10556781003796622.
  • [43] Li D.F., Yang J., “A difference-index based ranking bilinear programming approach to solving bimatrix games with payoffs of trapezoidal intuitionistic fuzzy numbers”, Journal of Applied Mathematics, 2013, 1–10. DOI: 10.1155/2013/697261.
  • [44] Li S.J., Zhang Q., “The measure of interaction among players in games with fuzzy coalitions”,Fuzzy Sets and Systems, vol. 159, no. 2, 2008, 119–137. DOI: 10.1016/j.fss.2007.08.013.
  • [45] Li S.J., Zhang Q., “A simplified expression of the Shapley function for fuzzy game”, European Journal of Operational Research, vol. 196, no. 1, 2009, 234–245. DOI: 10.1016/j.ejor.2008.02.034.
  • [46] Liu S.T., Kao C., “Solution of fuzzy matrix games: An application of the extension principle”, International Journal of Intelligent Systems, vol. 22, no. 8, 2007, 891–903. DOI: 10.1002/int.20221.
  • [47] Liu S.T., Kao C., “Matrix games with interval data”, Computers and Industrial Engineering, vol. 56, no. 4, 2009, 1697–1700. DOI: 10.1016/j.cie.2008.06.002.
  • [48] Maeda T., “On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs”, Fuzzy Sets and Systems, vol. 139, no. 2, 2003, 283–296. DOI: 10.1016/S0165-0114(02)00509-2.
  • [49] Mare M., “Fuzzy coalitions structures”, Fuzzy Sets and Systems, vol. 114, no. 1, 2000, 23–33. DOI: 10.1016/S0165-0114(98)00006-2.
  • [50] Mathew R., Kaimal M.R., (). A fuzzy approach to the 22 games and an analysis of the game of chicken. International Journal of Knowledge-based and Intelligent Engineering Systems, 8, 2004, 181–188.
  • [51] Molina E., Tejada J., “The equalizer and the lexico-graphical solutions for cooperative fuzzy games: Characterization and properties”, Fuzzy Sets and Systems, vol. 125, no. 3, 2002, 369–387. DOI: 10.1016/S0165-0114(01)00023-9.
  • [52] Nan J.X., Li D.F., Zhang M., “The linear programming approach to matrix games with payoffs of intuitionistic fuzzy sets”. In: Proceedings of Second International Workshop on Computer Science and Engineering, 2009, 603–607. DOI: 10.1109/WCSE.2009.885.
  • [53] Nan J.X., Li D.F., Zhang M.J., “A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers”, International Journal of Computational Intelligence Systems, vol. 3, no. 3, 2010, 280–289. DOI: 10.2991/ijcis.2010.3.3.4.
  • [54] Nan J.X., Zhang M.J., Li D.F., “A methodology for matrix games with payoffs of triangular intuitionistic fuzzy number”, Journal of Intelligent & Fuzzy Systems, vol. 27, no. 4, 2013, DOI: 10.3233/IFS-141135.
  • [55] Nayak P. K., Pal M., “Linear programming technique to solve two person matrix games with interval payoffs”, Asia-Pacific Journal of Operational Research, vol. 26, 2009, 285–305. DOI: 10.1142/S0217595909002201.
  • [56] Neumann J. von., Morgenstern O., Theory of Games and Economic Behaviour, New York: Princeton University Press, 1944.
  • [57] Nishizaki I., Sakawa M., “Equilibrium solutions in multiobjective bimatrix games with fuzzy pay-offs and fuzzy goals”, Fuzzy Sets and Systems, vol. 111, no. 1, 2000, 99–116. DOI: 10.1016/S0165-0114(98)00455-2.
  • [58] Nishizaki I., Sakawa M., “Fuzzy cooperative games arising from linear production programming problems with fuzzy parameters”, Fuzzy Sets and Systems, vol. 114, no. 1, 2000, 11–21. DOI: 10.1016/S0165-0114(98)00134-1.
  • [59] Nishizaki I., Sakawa M., “Solutions based on fuzzy goals in fuzzy linear programming games”, Fuzzy Sets and Systems, vol. 115, no. 1, 2000, 105–119. DOI: 10.1016/S0165-0114(99)00028-7.
  • [60] Nishizaki I., Sakawa M., Fuzzy and Multiobjective Games for Conflict Resolution, Heidelberg: Springer, 2001. DOI: 10.1007/978-3-7908-1830-7.
  • [61] Owen G., Game Theory, 2nded., New York: Academic Press, 1982.
  • [62] Peldschus F., Zavadskas E. K., “Fuzzy matrix games multi-criteria model for decision-making in engineering”, Informatica, 16, 2005, 107–120.
  • [63] Sakawa M., Nishizaki I., “A lexicographical solution concept in an n-person cooperative fuzzy game”, Fuzzy Sets and Systems, vol. 61, no. 3, 1994, 265–275. DOI: 10.1016/0165-0114(94)90169-4.
  • [64] Sakawa M., Nishizaki I., (1994). Maxmin solution for fuzzy multiobjective matrix games. Fuzzy Sets and Systems, 67, 53–69.
  • [65] Song, Q. & Kandel, A. (1999). A fuzzy approach to strategic games. IEEE Transactions on Fuzzy Systems, 7, 634–642.
  • [66] Tijs, S., Branzei, R., Ishihara, S. & Muto, S. (2004). On cores and stable sets for fuzzy games. Fuzzy Sets and Systems, 146, 285–296.
  • [67] Tsurumi, M., Tanino, T. & Inuiguchi, M. (2001). A Shapley function on a class of cooperative fuzzy games. European Journal of Operational Research, 129, 596–618.
  • [68] Verma, T. & Kumar, A. (2014). A note on “A methodology for matrix games with payoffs of triangular intuitionistic fuzzy number”. Journal of Intelligent & Fuzzy Systems, DOI:10.3233/IFS-141135.
  • [69] Vijay, V., Chandra, S. & Bector, C.R. (2004). Bima-trix games with fuzzy payoffs and fuzzy goals. Fuzzy Optimization and Decision Making, 3, 327–344.
  • [70] Vijay, V., Chandra, S. & Bector, C.R. (2005). Matrix games with fuzzy goals and fuzzy payoffs. Omega, 33, 425–429.
  • [71] Vijay, V., Mehra, A. & Chandra, S. (2007). Fuzzy matrix games via a fuzzy relation approach. Fuzzy Optimization and Decision Making, 6, 299–314.
  • [72] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f428c839-35ef-4e2e-81b4-3375a3b4a7a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.