Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Africa is the continent most exposed to fires, accounting for over half of the burned areas and pyrogenic greenhouse gas emissions globally. Fire seasonality in Africa follows the dry seasons, primarily from October to March for the Northern Hemisphere, with a peak in December–January, and from April to October for the Southern Hemisphere, with a peak in August. In 2001, we monitored active fires monthly, observing significant changes based on the seasons. The equatorial and southern regions of Africa showed a higher concentration of fires, less in the north. This variation has been consistent for 21 years, up to 2021. A strong correlation exists between the latitude of African regions and fire abundance. Equatorial countries experience more fires during the period between December and March, while southern countries see more during the other time of year period. Key factors include the accumulation of biomass, which fuels fires during the rainy season, and increasing human pressure, especially due to the need to warm up.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--80
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Natural Resources and Environment Laboratory, Polydisciplibary Faculty of Taza, Sidi Mohamed Ben Abdellah University
autor
- Natural Resources and Environment Laboratory, Polydisciplibary Faculty of Taza, Sidi Mohamed Ben Abdellah University
autor
- Natural Resources and Environment Laboratory, Polydisciplibary Faculty of Taza, Sidi Mohamed Ben Abdellah University
Bibliografia
- Andela, N., Morton, D.C., Giglio, L., Chen, Y., van der Werf, G.R., Kasibhatla, P.S., Randerson, J.T. 2017. A human driven decline in global burned area. Science 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108
- Archibald, S., Bond, W.J., 2003. Growing tall vs growing wide: Tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102(3), 3–12. https://doi.org/10.1034/j.1600-0706.2003.12181.x
- Archibald, S., Scholes, R.J., 2007. Leaf green-up in a semi-arid African savanna: Separating tree and grass responses to environmental cues. Journal of Vegetation Science 18(1), 583–594. https://doi.org/10.1111/j.16541103.2007.tb02572.x
- Archibald, S., Roy, D.P., van Wilgen, B.W., Scholes, R.J., 2009. What limits fire? An examination of the drivers of burnt area in southern Africa. Global Change Biology 15(3), 613–630. https://doi.org/10.1111/j.1365-2486.2008.01754.x
- Archibald, S., Scholes, R.J., Roy, D.P., Roberts, G., Boschetti, L., 2010. Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire 19(7), 861–878. https://doi.org/10.1071/WF10008
- Boschetti, L., Roy, D.P., 2008. Defining a fire year for reporting and analysis of global inter-annual fire variability. Journal of Geophysical Research: Biogeosciences, 113, G03020. https://doi.org/10.1029/2008JG000686
- Bradstock, R.A. 2010. A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x
- Chidumayo, E.N., Okali, D., Kowero, G., Larwanou, M. (Eds), 2011. Climate change and African forest and wildlife resources. African Forest Forum.
- Earl, N., Simmonds, I., 2018. Spatial and temporal variability and trends in 2001–2016 global fire activity. Journal of Geophysical Research: Atmospheres 123(5), 2524–2536. https://doi.org/10.1002/2017JD027749
- Giglio, L., Schroeder, W., Hall, J.V., Justice, C.O., 2018. MODIS Collection 6 Active Fire Product User’s Guide (Revision B). University of Maryland.
- Gillespie, M., Okin, G.S., Meyer, T., Ochoa, F., 2024. Evaluating burn severity and post-fire woody vegetation regrowth in the Kalahari using UAV imagery and random forest algorithms. Remote Sensing 16(21), 3943. https://doi.org/10.3390/rs16213943
- Govender, N., Trollope, W.S.W., Van Wilgen, B.W., 2006. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology 43(4), 748–758. https://doi.org/10.1111/j.1365-2664.2006.01186.x
- Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Privette, J.L., Riggs, G., Strahler, A., Lucht, W., Myneni, R.B., Knyazikhin, Y., Running, S.W., Nemani, R.R., Wan, Z., Huete, A.R., van Leeuwen, W., Wolfe,R.E., Giglio, L., Muller, J., Lewis, P., Barnsley, M.J., 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing 36(4), 1228–1249. https://doi. org/10.1109/36.701075
- Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P., Morisette, J.T., 2002. An overview of MODIS land data processing and product status. Remote Sensing of Environment 83(1–2), 3–15. https://doi.org/10.1016/S0034-4257(02)00084-6
- Kaufman, Y.J., Tanré, D., Remer, L.A., Vermote, E.F., Chu, A., Holben, B.N., 1997. Operational remote sensing of tropospheric Aerosol over land from EOS MODIS. Journal of Geophysical Research: Atmospheres 102(D14), 17051–17067. https://doi.org/10.1029/96JD03988
- Laris, P., Jacobs, R., 2021. On the problem of natural savanna fires. New Phytologist 229(5), 2601–2605. https://doi.org/10.1111/nph.17138
- Mouillot, F., Field, C.B., 2005. Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Global Change Biology 11(3), 398–420. https://doi.org/10.1111/ j.1365-2486.2005.00920.x
- Pereira, A.A., Pereira, J.M.C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., Tavares De Carvalho, L.M., 2017. Burned area mapping in the Brazilian savanna using a one-class support vector machine trained by active fires. Remote Sensing 9(11), 1161. https://doi.org/10.3390/rs9111161
- Scheiter, S., Higgins, S.I., 2009. Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach (aDGVM). Global Change Biology 15(9), 2224–2246.https://doi.org/10.1111/j.1365-2486.2008.01838.x
- Staver, A.C., Archibald, S., Levin, S.A., 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334(6053), 230–232. https://doi.org/10.1126/science.1210465
- Van Wilgen, B.W., Biggs, H.C., 2011. A critical assessment of adaptive ecosystem management in a large savanna protected area in South Africa. Biological Conservation 144(1), 117–127. https://doi.org/10.1016/j.biocon.2010.07.026
- Williams, A.P., Abatzoglou, J.T., 2016. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Current Climate Change Reports 2, 1–14. https://doi.org/10.1007/s40641-016-0031-0
- Ying, L., Shen, Z., Yang, M., Piao, S., 2019. Wildfire detection probability of MODIS fire products under the constraint of environmental factors: A study based on confirmed ground wildfire records. Remote Sensing 11(24), 3031. https://doi.org/10.3390/rs11243031
- Zubkova, M., Boschetti, L., Abatzoglou, J.T., Giglio, L., 2019. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophysical Research Letters 46(13), 7643–7653. https://doi.org/10.1029/2019GL083469
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f42429cd-61d2-4bfe-a2d4-df4f8ffe9638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.