PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel solutions on model-based and model-free robotic-assisted ankle rehabilitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this report, ankle rehabilitation routines currently approved by physicians are implemented via novel control algorithms on a recently appeared robotic device known as the motoBOTTE. The physician specifications for gait cycles are translated into robotic trajectories whose tracking is performed twofold depending on the availability of a model: (1) if obtained via the Euler-Lagrange approach along with identification of unknown plant parameters, a new computed-torque control law is proposed; it takes into account the parallel-robot characteristics; (2) if not available, a variation of the active disturbance rejection control technique whose parameters need to be tuned, is employed. A detailed discussion on the advantages and disadvantages of the model-based and model-free results, from the continuous-time simulation to the discrete-time implementation, is included.
Rocznik
Strony
5--27
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr., wzory
Twórcy
  • Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France
  • Institute of Technology, 5 de Febrero 818 Sur, Ciudad Obregon, Sonora, Mexico
  • Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France
autor
  • Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France
  • Centre de Recherche Cerveau et Cognition, CNRS UMR 5549, Université de Toulouse, Toulouse 31052, France
  • Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France
  • Institute of Technology, 5 de Febrero 818 Sur, Ciudad Obregon, Sonora, Mexico
Bibliografia
  • [1] N. Alibeji, N. Kirsch, S. Farrokhi, and N. Sharma: Further results on predictor-based control of neuromuscular electrical stimulation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), (2015), 1095-1105.
  • [2] J. Alvarez, J. C. Arceo, C. Armenta, J. Lauber, and M. Bernal: An extension of computed-torque control for parallel robots in ankle reeducation, IFAC-PapersOnLine, 52(11), (2019), 1-6.
  • [3] J. C. Arceo, J. Lauber, L. Robinault, S. Paganelli, M. Jochumsen, I.K. Niazi, E. Simoneau, and S. Cremoux: Modeling and control of rehabilitation robotic device: motobotte, In International Conference on NeuroRehabilitation, pages 546-550. Springer, 2018.
  • [4] J. C. Arceo, M. Sanchez, V. Estrada-Manzo, and M. Bernal: Convex stability analysis of nonlinear singular systems via linear matrix inequalities, IEEE Transactions on Automatic Control, 2018.
  • [5] V. Arnez-Paniagua, H. Rifaï, Y. Amirat, M. Ghedira, J. M. Gracies, and S. Mohammed: Adaptive control of an actuated ankle foot orthosis for paretic patients, Control Engineering Practice, 90 (2019), 207-220.
  • [6] E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang, S. Cheng, S. E. Chiuve, M. Cushman, F. N. Delling, R. Deo, et al.: Heart disease and stroke statistics-2018 update: a report from the American Heart Association, Circulation, 137(12), (2018), e67.
  • [7] A. Björck and V. Pereyra: Solution of vandermonde systems of equations, Mathematics of Computation, 24(112), (1970), 893-903.
  • [8] D. Brown, B. Boden-Albala, K. Langa, L. Lisabeth, M. Fair, M. Smith, R. L. Sacco, and L. Morgenstern: Projected costs of ischemic stroke in the united states, Neurology, 67(8), (2006) 1390-1395.
  • [9] G. C. Burdea, D. Cioi, A. Kale, W. E. Janes, S. A. Ross, and J. R. Engsberg: Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy - a case study series, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), (2012), 165-173.
  • [10] H. Cheng, Y. K. Yiu, and Z. Li: Dynamics and control of redundantly actuated parallel manipulators, IEEE/ASME Transactions on mechatronics, 8(4), (2003), 483-491.
  • [11] D. M. Dawson, C. T. Abdallah, and F. L. Lewis: Robot manipulator control: theory and practice, CRC Press, 2003.
  • [12] I. Díaz, J. J. Gil, and E. Sánchez: Lower-limb robotic rehabilitation: literature review and challenges, Journal of Robotics, 2011, 2011.
  • [13] A. Dontchev and W. Hager: The euler approximation in state constrained optimal control, Mathematics of Computation, 70(233), (2001), 173-203.
  • [14] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, A. E. Moran, R. L. Sacco, L. Anderson, T. Truelsen, et al.: Global and regional burden of stroke during 1990-2010: findings from the global burden of disease study 2010, The Lancet, 383(9913), (2014), 245-255.
  • [15] M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern: Model-based control of fes-induced single joint movements, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(3), (2001), 245-257.
  • [16] P. Ghosh: Numerical, Symbolic and Statistical Computing for Chemical Engineers using MATLAB, PHI Learning Pvt. Ltd., 2018.
  • [17] J. Han: From pid to active disturbance rejection control, IEEE transactions on Industrial Electronics, 56(3), (2009), 900-906.
  • [18] H. Herr: Exoskeletons and orthoses: classification, design challenges and future directions, Journal of neuroengineering and rehabilitation, 6(1), (2009), 21.
  • [19] N. Instruments: NI myRIO-1900 User Guide and Specifications, National Instruments, 11500 North Mopac Expressway, Austin, Texas, 78759-3504, 376047c-01 edition, May 2016.
  • [20] S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari: Robotic orthosis lokomat: A rehabilitation and research tool, Neuromodulation: Technology at the neural interface, 6(2), (2003), 108-115.
  • [21] M. Jochumsen, S. Cremoux, L. Robinault, J. Lauber, J. C. Arceo, M. Navid, R. Nedergaard, U. Rashid, H. Haavik, and I. Niazi: Investigation of optimal afferent feedback modality for inducing neural plasticity with a self-paced brain-computer interface, Sensors, 18(11), (2018), 3761.
  • [22] M. A. Khosravi and H. D. Taghirad: Robust pid control of fully-constrained cable driven parallel robots, Mechatronics, 24(2), (2014), 87-97.
  • [23] V. Klee and G. J. Minty: How good is the simplex algorithm, Technical report, Washington Univ Seattle Dept. of Mathematics, 1970.
  • [24] P. Langhorne, J. Bernhardt, and G. Kwakkel: Stroke rehabilitation, The Lancet, 377(9778), (2011), 1693-1702.
  • [25] F. L. Lewis: A survey of linear singular systems, Circuits, Systems and Signal Processing, 5(1), (1986), 3-36.
  • [26] O. Linda and M. Manic: Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot, IEEE Transactions on Industrial Informatics, 7(4), (2011), 661-670.
  • [27] H. Markus: Stroke: causes and clinical features, Medicine, 36(11), (2008), 586-591.
  • [28] J. Merlet: Parallel robots, volume 128, Springer Science & Business Media, 2006.
  • [29] M. Motor: ESCON 50/5 DC Servo Controller Hardware Reference, Maxon Motor, Bränigstrasse 220 P. O. Box 263 CH-6072 Sachseln, rel7125 edition, November 2018.
  • [30] N. S. Nedialkov, J. D. Pryce, and G. Tan: Algorithm 948: Daesa - a matlab tool for structural analysis of differential-algebraic equations: Software, ACM Transactions on Mathematical Software (TOMS), 41(2), (2015), 12.
  • [31] M. Noël, B. Cantin, S. Lambert, C. M. Gosselin, and L. J. Bouyer: An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), (2008), 390-399.
  • [32] C. C. Pantelides: The consistent initialization of differential-algebraic systems, SIAM Journal on Scientific and Statistical Computing, 9(2), (1998), 213-231.
  • [33] L. Peng, Z.-G. Hou, and W. Wang: Dynamic modeling and control of a parallel upper-limb rehabilitation robot, In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 532-537, 2015.
  • [34] J. C. Pérez-Ibarra and A. A. Siqueira: Comparison of kinematic and emg parameters between unassisted, fixed-and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects, In 2017 International Conference on Rehabilitation Robotics (ICORR), pages 461-466. IEEE, 2017.
  • [35] N. Petroff, K. D. Reisinger, and P. A. Mason: Fuzzy-control of a hand orthosis for restoring tip pinch, lateral pinch, and cylindrical prehensions to patients with elbow flexion intact, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(2), (2001), 225-231.
  • [36] Z. Qi, J. E. McInroy, and F. Jafari: Trajectory tracking with parallel robots using low chattering, fuzzy sliding mode controller, Journal of Intelligent and Robotic Systems, 48(3), (2007) 333-356.
  • [37] P. J. Rabier and W. C. Rheinboldt: Theoretical and numerical analysis of differential-algebraic equations, Elsevier, 2002.
  • [38] E. J. Rouse, L. J. Hargrove, E. J. Perreault, and T. A. Kuiken: Estimation of human ankle impedance during the stance phase of walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), (2014), 870-878.
  • [39] B. S. Rupal, S. Rafique, A. Singla, E. Singla, M. Isaksson, and G. S. Virk: Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications,International Journal of Advanced Robotic Systems, 14(6), (2017), 1729881417743554.
  • [40] A. Sala and C. Ariño: Polynomial fuzzy models for nonlinear control: A Taylor series approach, IEEE Transactions on Fuzzy Systems, 17(6), (2009), 1284-1295.
  • [41] L. F. Shampine, S. Thompson, J. Kierzenka, and G. Byrne: Non-negative solutions of odes, Applied Mathematics and Computation, 170(1), (2005), 556-569.
  • [42] W. W. Shang, S. Cong, and Y. Ge: Adaptive computed torque control for a parallel manipulator with redundant actuation, Robotica, 30(3), (2012) 457-466.
  • [43] K. A. Shorter, G. F. Kogler, E. Loth, W. K. Durfee, and E. T. Hsiao-Wecksler: A portable powered ankle-foot orthosis for rehabilitation, Journal of Rehabilitation Research & Development, 48(4), (2011).
  • [44] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant: Sliding mode control and observation, Springer, 2014.
  • [45] R. M. Singh, S. Chatterji, and A. Kumar: Trends and challenges in emg based control scheme of exoskeleton robots-a review, Int. J. Sci. Eng. Res., 3(9), (2012), 933-940.
  • [46] SKF: CAHB-21: Linear Actuator. Installation, operation and maintenance manual, SKF Taiwan Co., Ltd, No. 3, Lane 11, Tzu-Chiang St., Tu-Cheng Industrial District, Taipei, Taiwan, August 2010.
  • [47] Y. Su, B. Duan, and C. Zheng: Nonlinear pid control of a six-dof parallel manipulator, IEE Proceedings-Control Theory and Applications, 151(1), (2004), 95-102.
  • [48] B. M. Vinagre, Y. Q. Chen, and I. Petráš: Two direct tustin discretization methods for fractional-order differentiator/integrator, Journal of the Franklin Institute, 340(5), (2003), 349-362.
  • [49] O. Vinogradov: Fundamentals of kinematics and dynamics of machines and mechanisms, CRC Press, 2000.
  • [50] L. Wang, Z. Lu, X. Liu, K. Liu, and D. Zhang: Adaptive control of a parallel robot via backstepping technique, International Journal of Systems, Control and Communications, 1(3), (2009), 312-324.
  • [51] D. A. Winter: Biomechanics and motor control of human movement, John Wiley & Sons, 2009.
  • [52] R. Xu, N. Jiang, N. Mrachacz-Kersting, C. Lin, G. A. Prieto, J. C. Moreno, J. L. Pons, K. Dremstrup, and D. Farina: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity, IEEE Transactions on Biomedical Engineering, 61(7), (2014), 2092-2101.
  • [53] J. Yoon, J. Ryu, and K.-B. Lim: Reconfigurable ankle rehabilitation robot for various exercises, Journal of Robotic Systems, 22(S1), (2006), S15-S33.
  • [54] H. Zhu, J. Doan, C. Stence, G. Lv, T. Elery, and R. Gregg: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis, In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 504-510, IEEE, 2017.
Uwagi
1. This work has been supported by the ECOS Nord SEP-CONACYT-ANUIES Project (France M17M08 / Mexico 291309). This research is sponsored by ELSAT 2020 of the Hauts-de-France Region, the European Community, the Regional Delegation for Research and Technology, the French Ministry of Higher Education and Research, and the French National Center for Scientific Research.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4223ced-ff3b-4e04-b532-54381ae37aae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.