PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie matematyczne węglanowych ogniw paliwowych - przegląd

Identyfikatory
Warianty tytułu
EN
Mathematical modeling of molten carbonate fuel cell – a review
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano przegląd technik modelowania węglanowych ogniw paliwowych. Uwzględniono takie parametry jak: napięcie rzeczywiste, napięcie maksymalne, straty aktywacji, straty koncentracji, straty na katodzie i anodzie ogniwa, straty ogniwa w ujęciu całościowym. Modelowanie matematyczne ogniwa paliwowego jest bardzo interdyscyplinarnym zadaniem. Obecnie badania nad ogniwami paliwowymi MCFC są ukierunkowane na poprawę ich parametrów poprzez zmniejszenie występujących w nich strat. Aktualnie stosowane modele ogniw paliwowych opierają się na równaniu określającym wpływ gęstości prądu na napięcie generowane przez ogniwo.
EN
This article presents an overview of mathematical modeling of molten carbonate fuel cells (MCFC). Parameters such as: actual voltage, the maximum voltage, activation loss, concentration loss, loss of the cathode and anode and whole cell loss are presented. Mathematical modeling of the fuel cell is a multi-disciplinary task. Currently, research on molten carbonate fuel cells is focused on improving their performance by reducing the losses occurring in them. Currently used models of fuel cells based on the equation defining the effect of current density on voltage generated by the cell.
Wydawca
Czasopismo
Rocznik
Tom
Strony
77--82
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskie
Bibliografia
  • [1] Arato E., Bosio B., Costa P., Parodi F.: Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells. Journal of Power Sources 102, pp. 74–81, 2001.
  • [2] Arato E., Bosio B., Massa R., Parodi F.: Optimisation of the cell shape for industrial MCFC stacks. Journal of Power Sources 86, pp. 302–308, 2000.
  • [3] Baranak M., Atakul H.: A basic model for analysis of molten carbonate fuel cell behaviour. Journal of Power Sources 172, pp. 831–839, 2007.
  • [4] Kotowicz J., Bartela Ł.: Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant. Energy 38, pp. 118-127, 2012
  • [5] Bittanti S., Canevese S., Marco A. D., Errigo A., Prandoni V.: Molten carbonate fuel cell electrochemistry modeling. Journal of Power Sources 160(2), pp. 846 – 851, 2006. Special issue including selected papers presented at the International Workshop on Molten Carbonate Fuel Cells and Related Science and Technology 2005
  • [6] Bosio B., Costamagna P., Parodi F.: Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process. Chemical Engineering Science 54(13-14), pp. 2907 – 2916, 1999.
  • [7] Bozzini B., Maci S., Sgura I., Presti R. L., Simonetti E.: Numerical modelling of mcfc cathode degradation in terms of morphological variations. International Journal of Hydrogen Energy In Press, Corrected Proof, pp. –, 2010.
  • [8] Brouwer J., Jabbari F., Leal E. M., Orr T.: Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation. Journal of Power Sources 158(1), pp. 213 – 224, 2006.
  • [9] Campanari S., Chiesa P., Manzolini G.: CO2 capture from combined cycles integrated with molten carbonate fuel cells. International Journal of Greenhouse Gas Control 4, pp. 441–451, 2010.
  • [10] Fontes E., Lagergren C., Simonsson D.: Mathematical modelling of the mcfc cathode. Electrochimica Acta 38(18), pp. 2669 – 2682, 1993.
  • [11] Fontes E., Lagergren C., Simonsson D.: Mathematical modelling of the mcfc cathode on the linear polarisation of the nio cathode. Journal of Electroanalytical Chemistry 432(1-2), pp. 121 – 128, 1997.
  • [12] Freni S., Maggio G., Passalacqua E.: Modeling of porous membranes for molten carbonate fuel cells. Materials Chemistry and Physics 48(3), pp. 199 – 206, 1997.
  • [13] Fuel cell handbook – 6th edition. Tech. rep., EG and G Technical Services, Inc., 2002.
  • [14] Kang M. P. and Winnick J.: Concentration of carbon dioxide by a high-temperature electrochemical membrane cell. Journal of Applied Electrochemistry 15, pp. 431–439, 1985.
  • [15] Koh J.-H., Seo H.-K.,. Yoo Y.-S, Lim H. C.: Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack. Chemical Engineering Journal 87, pp. 367–379, 2002.
  • [16] L. J and D. A.: Fuel cell systems explained. Elsevier Amsterdam, 1995.
  • [17] Lee S.-Y., Kim D.-H., Lim H.-C., Chung G.-Y.: Mathematical modeling of a molten carbonate fuel cell (mcfc) stack. International Journal of Hydrogen Energy 35(23), pp. 13096 – 13103, 2010. Asian Hydrogen Energy Conference 2009.
  • [18] Liu A. and Weng Y.: Modeling of molten carbonate fuel cell based on the volume-resistance characteristics and experimental analysis. Journal of Power Sources 195(7), pp. 1872 – 1879, 2010.
  • [19] Ma Z., Jeter S. M., Abdel-Khalik S. I.: Modeling the transport processes within multichannel molten carbonate fuel cells. International Journal of Hydrogen Energy 28(1), pp. 85 – 97, 2003.
  • [20] Ma Z., Venkataraman R., Farooque M.: Fuel cells - molten carbonate fuel cells — modeling. In Encyclopedia of Electrochemical Power Sources, J. Garche, ed., pp. 519 – 532, Elsevier, Amsterdam, 2009.
  • [21] Machielse L. A. H.: Modeling of batteries and fuel cells. The Electrochemical Society Proceedings Series 91-10, p. 166, 1991.
  • [22] Milewski J., Badyda K., Misztal Z., Wołowicz M.: Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application. Rynek Energii 90(5), pp. 118–123, 2010.
  • [23] Milewski J., Lewandowski J., Miller A.: Reducing co2 emissions from a coal fired power plant by using a molten carbonate fuel cell. In ASME Turbo Expo 2008, pp. 389–395, American Society of Mechanical Eengineering, 2008.
  • [24] Milewski J., Świrski K., Santarelli M., Leone P.: Advanced methods of solid oxide fuel cell modeling. Springer, 2011.
  • [25] Milewski J., Wołowicz M., Badyda K., Misztal Z.: 36 kw polymer exchange membrane fuel cell as combined heat and power unit. ECS Transactions 42 (1), pp. 75–87, 2012.
  • [26] Nguyen Q. M.: Technological status of nickel oxide cathodes in molten carbonate fuel cells – a review. Journal of Power Sources 24(1), pp. 1 – 19, 1988.
  • [27] Orecchini F., Bocci E., Carlo A. D.: MCFC and microturbine power plant simulation. Journal of Power Sources 160, pp. 835–841, 2006.
  • [28] Park H.-K., Lee Y.-R., Kim M.-H., Chung G.-Y., Nam S.-W., Hong S.-A., Lim T.-H., Lim H.-C.: Studies of the effects of the reformer in an internal-reforming molten carbonate fuel cell by mathematical modeling. Journal of Power Sources 104(1), pp. 140 – 147, 2002.
  • [29] Prins-Jansen J. A., Hemmes K., de Wit J. H. W.: An extensive treatment of the agglomerate model for porous electrodes in molten carbonate fuel cells-i. qualitative analysis of the steady-state model. Electrochimica Acta 42(23–24), pp. 3585–3600, 1997.
  • [30] Sampath V., Sammells A., Selman J.: A performance and current distribution model for scale-up molten carbonate fuel cell. Journal of Electrochemical Society 127, p. 79, 1980.
  • [31] Specchia S., Saracco G., Specchia V.: Modeling of an apu system based on mcfc. International Journal of Hydrogen Energy 33(13), pp. 3393 – 3401, 2008. 2nd National and 1st Latin American Congress, Hydrogen and Sustainable Energy Sources.
  • [32] Standaert F., Hemmes K., Woudstra N.: Analytical fuel cell modeling. Journal of Power Sources 63, p. 221, 1996.
  • [33] Services E. T., ed.: Fuel Cell Handbook. EG&G Technical Services, 2004.
  • [34] Sugiura K., Takei K., Tanimoto K., Miyazaki Y.: The carbon dioxide concentrator by using MCFC. Journal of Power Sources 118, pp. 218–227, 2003.
  • [35] Wolf T. and Wilemski G.: Molten carbonate fuel cell performance model. Journal of Electrochemical Society 30, pp. 48–55, 1983.
  • [36] Yoshiba F., Morita H., Yoshikawa M., Mugikura Y., Izaki Y., Watanabe T., Komoda M., Masudac Y., Zaima N.: Improvement of electricity generating performance and life expectancy of mcfc stack by applying li/na carbonate electrolyte. Journal of Power Sources 128, pp. 152–164, 2004.
  • [37] Yuh C. Y. and Selman J. R.: Polarization of the molten carbonate fuel cell anode and cathode. Journal of Electrochemical Society 131, p. 2062, 1984.
  • [38] Yuh C. Y. and Selman J. R.: The polarization of molten carbonate fuel cell electrodes i. analysis of steady-state polarization data. Journal of Electroc 138, pp. 3642–3649, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f41e5ebc-f1c8-46f5-a09f-3ad0bb3237a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.