Identyfikatory
Warianty tytułu
Nowe podejście do przyspieszonej metody badania reaktywności alkalicznej kruszyw krajowych
Języki publikacji
Abstrakty
In Poland, the prevailing protocols for examining the alkali reactivity of aggregates are based on indirect methodologies such as petrographic appraisal, in addition to direct methodologies including the measurement of expansion in mortar and concrete specimens containing the aggregate under investigation. The available research methods exhibit certain deficiencies, which have been mitigated under the experimental conditions delineated in the novel accelerated approach for ascertaining the reactivity of aggregates, otherwise known as the MCPT - Miniature Concrete Prism Test. The methodology of MCPT has the potential to become an alternative for the existing procedures of quality assessment for both fine and coarse aggregates. This work presents the assessment results of the alkaline reactivity of indigenous fine quartz aggregate, examined in accordance with the protocols established by the Polish General Directorate for National Roads and Motorways along together the novel, expedited MCPT methodology.
Obecnie stosowane w Polsce procedury badania reaktywności alkalicznej kruszyw oparte są na metodach pośrednich, takich jak ocena petrograficzna oraz metodach bezpośrednich, polegających na określaniu ekspansji próbek zapraw i betonów z badanym kruszywem. Dostępne metody badawcze wykazują pewne wady, które zostały ograniczone w warunkach badawczych ustalonych w nowej przyspieszonej metodzie określania reaktywności kruszyw, tzw. MCPT - Miniature Concrete Prism Test. Metoda MCPT może stać się alternatywą dla obecnego testowania jakości kruszyw drobnych i grubych. W pracy przedstawiono wyniki oceny reaktywności alkalicznej krajowego drobnego kruszywa kwarcowego, badanego zgodnie z procedurami Generalnej Dyrekcji Dróg Krajowych i Autostrad oraz nowej przyspieszonej metody MCPT.
Czasopismo
Rocznik
Tom
Strony
166--173
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Kielce University of Technology, Poland
autor
- Kielce University of Technology, Poland
- Centrum Technologiczne Betotech sp. z o.o., Dąbrowa Górnicza, Poland
Bibliografia
- [1] Poole A.B.: Introduction to Alkali - Aggregate Reaction in Concrete. Materials Science Engineering, 1991, DOI:10.4324/9780203036631-3.
- [2] Stanton T.E.: Expansion of Concrete Through Reaction Between Cement and Aggregate. Proc. American Society of Civil Engineers, 66(10), 1941, pp. 1781-1811.
- [3] Giergiczny Z., Machniak Ł., Golda A., Witczak S., Adamski G., Bukowski L., Szewczyk E., Nowek M., Brykalski W.: Appendix 1 of the Technical Guidelines for the Classification of Domestic Aggregates and Prevention of the Alkali-Aggregate Reaction in Concrete Road Pavements and Road Engineering Facilities, Part II, Test Procedure PB/3/18. General Directorate for National Roads and Motorways, 2022.
- [4] Giergiczny Z., Machniak Ł., Golda A., Witczak S., Adamski G., Bukowski L., Szewczyk E., Nowek M., Brykalski W.: Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich, Część I. Generalna Dyrekcja Dróg Krajowych i Autostrad, 2022.
- [5] Giergiczny Z., Machniak Ł., Golda A., Witczak S., Adamski G., Bukowski L., Szewczyk E., Nowek M., Brykalski W.: Appendix 1 of the Technical Guidelines for the Classification of Domestic Aggregates and Prevention of the Alkali-Aggregate Reaction in Concrete Road Pavements and Road Engineering Facilities, Part II, Test Procedure PB/1/18. General Directorate for National Roads and Motorways, 2022.
- [6] ASTM C1260: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), p. 5.
- [7] RILEM Recommended Test Method AAR-2: Ultra-Accelerated Mortar-Bar Testing. Materials and Structures, 33, 2000, pp. 283-289.
- [8] Tanesi J., Drimalas T., Chopperla K.S.T., Beyene M., Ideker J.H., Kim H., Montanari L., Ardani A.: Divergence Between Performance in the Field and Laboratory Test Results for Alkali-Silica Reaction. Transportation Research Record, 2674, 2020, s. 120-134. https://doi.org/10.1177/03611981209132.
- [9] Thomas M., Fournier B., Folliard K., Ideker J., Shehata M.: Test Methods for Evaluating Preventive Measures for Controlling Expansion Due to Alkali-Silica Reaction in Concrete. Cement and Concrete Research, 36(10), 2006, pp. 1842-1856. https://doi.org/10.1016/j.cemconres.2006.01.014.
- [10] Deifalla A.F.: Potential of Alkali-Silica Reactivity of Unexplored Local Aggregates as per ASTM C1260. Materials, 15(19), 2022, 6627. https://doi.org/10.3390/ma15196627.
- [11] Giergiczny Z., Machniak Ł., Golda A., Witczak S., Adamski G., Bukowski L., Szewczyk E., Nowek M., Brykalski W.: Appendix 1 of the Technical Guidelines for the Classification of Domestic Aggregates and Prevention of the Alkali-Aggregate Reaction in Concrete Road Pavements and Road Engineering Facilities, Part II, Test Procedure PB/2/18. General Directorate for National Roads and Motorways, 2022.
- [12] ASTM C1293: Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction, p. 7.
- [13] RILEM Recommended Test Method AAR-3: Detection of Potential Alkali-Reactivity of Aggregates - Method for Aggregate Combinations Using Concrete Prism. Materials and Structures, 33, 2000, pp. 290-293.
- [14] Thomas M.D.A., Fournier B., Folliard K.J.: Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete: Rationale for the AASHTO PP65 Prescriptive Approach. United States. Federal Highway Administration, 2012.
- [15] Rivard P., Bérubé M.A., Ollivier J.P., Ballivy G.: Decrease of Pore Solution Alkalinity in Concrete Tested for Alkali-Silica Reaction. Materials and Structures, 40, 2007, pp. 909-921.
- [16] Rivard P., Bérubé M.-A., Ollivier J.-P., Ballivy G.: Alkali Mass Balance During the Accelerated Concrete Prism Test for Alkali-Aggregate Reactivity. Cement and Concrete Research, 33, 2003, pp. 1147-1153.
- [17] Latifee P.R., Rangaraju P.: Miniature Concrete Prism Test: Rapid Test Method for Evaluating Alkali-Silica Reactivity of Aggregates. Journal of Materials in Civil Engineering, 27, 2015, pp. 4014215.
- [18] Rangaraju P.R., Afshinnia K., Enugula S.S.R., Latifee E.R.: Evaluation of Alkali-Silica Reaction Potential of Marginal Aggregates Using Miniature Concrete Prism Test (MCPT). 15th International Conference on Alkali-Aggregate Reaction, São Paulo, Brazil, 2020.
- [19] Tanesi J., Drimalas T., Chopperla K.S.T., Beyene M., Ideker J.H., Kim H., Montanari L., Ardani A.: Divergence Between Performance in the Field and Laboratory Test Results for Alkali-Silica Reaction. Transportation Research Record, Vol. 2674, 2020, s. 1-15. https://doi.org/10.1177/03611981209132.
- [20] Broekmans M.A.T.M.: Structural Properties of Quartz and Their Potential Role for ASR. Materials Characterization, 53(2-4), 2004, pp. 129-140. https://doi.org/10.1016/j.matchar.2004.08.010.
- [21] Antolik A., Jóźwiak-Niedźwiedzka D.: Assessment of the Alkali-Silica Reactivity Potential in Granitic Rocks. Construction and Building Materials, 295, 2021, 123690.
- [22] Zapała-Sławeta J.: The Use of Computed Tomography and Scanning Microscopy Methods for Assessing the Alkaline Reactivity of Aggregate. Bulletin of the Polish Academy of Sciences Technical Sciences, 72(3), 2024, e149814. DOI: 10.24425/bpasts.2024.149814.
- [23] PN-EN 12407:2010: Metody Badań Kamienia Naturalnego - Badania Petrograficzne.
- [24] Dziedzic K., Glinicki M.A.: Risk Assessment of Reactive Local Sand Use in Aggregate Mixtures for Structural Concrete. Construction and Building Materials, 408, 2023, 133826. https://doi.org/10.1016/j.conbuildmat.2023.133826.
- [25] Alaejos P., Lanza V.: Influence of Equivalent Reactive Quartz Content on Expansion Due to Alkali-Silica Reaction. Cement and Concrete Research, 42, 2012, pp. 99-104.
Uwagi
This paper was supported by the Ministry of Education and Science [Doktorat Wdrożeniowy 2023].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f41d4c12-09d9-42d5-89b5-313da6bcf759