PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Generalized α-V-univex functions for multiobjective variational control problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to introduce a new class of _-V-univex/ generalized _-V-univex functions for a class of multiobjective variational control problems. Moreover, sufficient optimality conditions and Mond-Weir type duality results, associated with the multiobjective variational control problem, are established under aforesaid assumptions.
Słowa kluczowe
Rocznik
Strony
403--420
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Department of Applied Sciences, IIMT Engg. College, Ganga Nagar, Meerut-250 005, India
autor
  • Department of Applied Mathematics, Indian School of Mines, Dhanbad-826 004, Jharkhand, India
autor
  • Department of Applied Mathematics, Indian School of Mines, Dhanbad-826 004, Jharkhland, India
Bibliografia
  • 1. AHMAD, I. and GULATI, T.R. (2005) Mixed type duality for multiobjective variational problems with generalized (F, _)-convexity. J. Math. Anal. Appl. 306, 669-683.
  • 2. AHMAD, I. and SHARMA, S. (2010) Sufficiency and duality for multiobjective variational control problems with generalized (F, _, _, _)-V-convexity. Nonlinear Anal. 72, 2564-2579.
  • 3. ARANA-JIM´ENEZ,M., RUIZ-GARZ´ON, G., RUFI´ AN-LIZANA, A. and OSUNA– G´OMEZ, R. (2012)Weak efficiency in multiobjective variational problems under generalized convexity. J. Glob. Optim. 52, 109-121.
  • 4. BECTOR, C.R., SUNEJA, S.K. and GUPTA, S. (1992) Univex functions and univex nonlinear programming. In: Proceedings of the Administrative Sciences Association of Canada. Vaughan Memorial Library, Acadia University, 115-124.
  • 5. BHATIA, D. and KUMAR, P. (1995) Multiobjective control problem with generalized invexity. J. Math. Anal. Appl. 189, 676-692.
  • 6. CHANKONG, V. and HAIMES, Y.Y. (1983) Multiobjective Decision Making: Theory and Methods. North Holland, New York.
  • 7. CHEN, X. (2002) Duality for a class of multiobjective control problems. J. Math. Anal. Appl. 267, 377-394.
  • 8. DE OLIVEIRA, V.A., SILVA, G.N. and ROJAS-MEDAR, M.A. (2009) A class of multiobjective control problems. Optim. Contr. Appl. Met. 30, 77-86.
  • 9. GULATI, T.R., HUSAIN, I. and AHMED, A. (2005) Optimality conditions and duality for multiobjective control problems. J. Appl. Anal. 11, 225-245.
  • 10. HANSON, M.A. (1981) On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550.
  • 11. KAILEY, N. and GUPTA, S.K. (2013) Duality for a class of symmetric nondifferentiable multiobjective fractional variational problems with generalized convexity. Math. Comput. Model. 57, 1453-1465.
  • 12. KHAZAFI, K., RUEDA, N. and ENFLO, P. (2010) Sufficiency and duality for multiobjective control problems under generalized type I functions. J. Glob. Optim. 46, 111-132.
  • 13. KHAZAFI, K. and RUEDA, N. (2009) Multiobjective variational programming under generalized type-I univexity. J. Optim. Theory Appl. 142, 363-376.
  • 14. MOND, B. and SMART, I. (1988) Duality and sufficiency in control problems with invexity. J. Math. Anal. Appl. 136, 325-333.
  • 15. NAHAK, C. and NANDA, S. (1997) On efficiency and duality for multiobjective variational control problems with convexity. J. Math. Anal. Appl. 209, 415-434.
  • 16. NAHAK, C. and NANDA, S. (2007) Sufficient optimality criteria and duality for multiobjective variational control problems with V -invexity. J. Nonlinear Anal. 66, 1513-1525.
  • 17. NANIEWICZ, Z. and PUCHALA, P. (2012) Nonconvex minimization related to quadratic double-well energy approximation by convex problems. Control and Cybernetics 41(3), 525-543.
  • 18. NOOR, M.A. (2004) On generalized preinvex functions and monotonicities. J. Inequal. Pure Appl. Math. 5(4), 1-9.
  • 19. PREDA, V., STANCU-MINASIAN, I., BELDIMAN, M. and STANCU, A.M. (2009) Generalized V-univexity type I for multiobjective programming with n-set functions. J. Glob. Optim. 44, 131-148.
  • 20. TABOR, J. and TABOR, J. (2012) Paraconvex, but not strongly, Takagi functions. Control and Cybernetics 41(3), 545-559.
  • 21. ZHIAN, L. and QINGKAI, Y. (2001) Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256, 446-461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f41b830e-4d1e-4668-b269-8ac06127dd6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.