Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to introduce a new class of _-V-univex/ generalized _-V-univex functions for a class of multiobjective variational control problems. Moreover, sufficient optimality conditions and Mond-Weir type duality results, associated with the multiobjective variational control problem, are established under aforesaid assumptions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
403--420
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Applied Sciences, IIMT Engg. College, Ganga Nagar, Meerut-250 005, India
autor
- Department of Applied Mathematics, Indian School of Mines, Dhanbad-826 004, Jharkhand, India
autor
- Department of Applied Mathematics, Indian School of Mines, Dhanbad-826 004, Jharkhland, India
Bibliografia
- 1. AHMAD, I. and GULATI, T.R. (2005) Mixed type duality for multiobjective variational problems with generalized (F, _)-convexity. J. Math. Anal. Appl. 306, 669-683.
- 2. AHMAD, I. and SHARMA, S. (2010) Sufficiency and duality for multiobjective variational control problems with generalized (F, _, _, _)-V-convexity. Nonlinear Anal. 72, 2564-2579.
- 3. ARANA-JIM´ENEZ,M., RUIZ-GARZ´ON, G., RUFI´ AN-LIZANA, A. and OSUNA– G´OMEZ, R. (2012)Weak efficiency in multiobjective variational problems under generalized convexity. J. Glob. Optim. 52, 109-121.
- 4. BECTOR, C.R., SUNEJA, S.K. and GUPTA, S. (1992) Univex functions and univex nonlinear programming. In: Proceedings of the Administrative Sciences Association of Canada. Vaughan Memorial Library, Acadia University, 115-124.
- 5. BHATIA, D. and KUMAR, P. (1995) Multiobjective control problem with generalized invexity. J. Math. Anal. Appl. 189, 676-692.
- 6. CHANKONG, V. and HAIMES, Y.Y. (1983) Multiobjective Decision Making: Theory and Methods. North Holland, New York.
- 7. CHEN, X. (2002) Duality for a class of multiobjective control problems. J. Math. Anal. Appl. 267, 377-394.
- 8. DE OLIVEIRA, V.A., SILVA, G.N. and ROJAS-MEDAR, M.A. (2009) A class of multiobjective control problems. Optim. Contr. Appl. Met. 30, 77-86.
- 9. GULATI, T.R., HUSAIN, I. and AHMED, A. (2005) Optimality conditions and duality for multiobjective control problems. J. Appl. Anal. 11, 225-245.
- 10. HANSON, M.A. (1981) On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550.
- 11. KAILEY, N. and GUPTA, S.K. (2013) Duality for a class of symmetric nondifferentiable multiobjective fractional variational problems with generalized convexity. Math. Comput. Model. 57, 1453-1465.
- 12. KHAZAFI, K., RUEDA, N. and ENFLO, P. (2010) Sufficiency and duality for multiobjective control problems under generalized type I functions. J. Glob. Optim. 46, 111-132.
- 13. KHAZAFI, K. and RUEDA, N. (2009) Multiobjective variational programming under generalized type-I univexity. J. Optim. Theory Appl. 142, 363-376.
- 14. MOND, B. and SMART, I. (1988) Duality and sufficiency in control problems with invexity. J. Math. Anal. Appl. 136, 325-333.
- 15. NAHAK, C. and NANDA, S. (1997) On efficiency and duality for multiobjective variational control problems with convexity. J. Math. Anal. Appl. 209, 415-434.
- 16. NAHAK, C. and NANDA, S. (2007) Sufficient optimality criteria and duality for multiobjective variational control problems with V -invexity. J. Nonlinear Anal. 66, 1513-1525.
- 17. NANIEWICZ, Z. and PUCHALA, P. (2012) Nonconvex minimization related to quadratic double-well energy approximation by convex problems. Control and Cybernetics 41(3), 525-543.
- 18. NOOR, M.A. (2004) On generalized preinvex functions and monotonicities. J. Inequal. Pure Appl. Math. 5(4), 1-9.
- 19. PREDA, V., STANCU-MINASIAN, I., BELDIMAN, M. and STANCU, A.M. (2009) Generalized V-univexity type I for multiobjective programming with n-set functions. J. Glob. Optim. 44, 131-148.
- 20. TABOR, J. and TABOR, J. (2012) Paraconvex, but not strongly, Takagi functions. Control and Cybernetics 41(3), 545-559.
- 21. ZHIAN, L. and QINGKAI, Y. (2001) Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256, 446-461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f41b830e-4d1e-4668-b269-8ac06127dd6e