Identyfikatory
Warianty tytułu
Zdarzenia związane ze stosowaniem gazu
Języki publikacji
Abstrakty
This article shows incidents associated with the use of gas as an energy carrier. It presents selected incidents which have occurred in Poland and around the world in recent decades. Based on this, consequences of gas and air mixture explosions were analysed as well. The article presents the main causes of gas incidents which have taken place, as per instances which are similar worldwide. Incidents associated with the use of gas are not frequent, but at the same time very tragic as they often lead to illness or even death. In Poland, in the last twenty years, construction area disasters caused by gas explosions account for only 5% of all which have occurred, but the number of fatalities resulting from these cases is approximately 14%. The number of individuals injured reached 39% of all construction disaster victims. Considering all these facts, it is necessary to undertake wide preventive measures in order to increase safety in the use of gaseous fuels.
Gaz ziemny jest to paliwo pochodzenia naturalnego, które zaspokaja zapotrzebowanie na ok. 20% energii na świecie. Pokłady gazu ziemnego występują w skorupie ziemskiej samodzielnie lub towarzyszą złożom ropy naftowej lub węgla kamiennego. Gaz ziemny stanowi mieszankę węglowodorów gazowych (etan, metan, propan), węglowodorów ciekłych oraz pewnych ilości dwutlenku węgla, azotu, wodoru, siarkowodoru, gazów szlachetnych (argon, hel). Po wydobyciu i oczyszczeniu gaz transportowany jest na dalekie odległości gazociągami wysokociśnieniowymi. Gaz ziemny może być również transportowany w formie gazu skroplonego. Na świecie około 2/3 objętości gazu jest transportowana za pomocą instalacji rurowych. Biorąc to pod uwagę oraz fakt wzrostu konsumpcji gazu na świecie należy oczekiwać wzrostu długości instalacji gazowych na świecie, a co z tym jest ściśle związane - problemów eksploatacyjnych kończących się awariami gazociągów. W pracy przedstawiono skalę problemu eksploatacji instalacji gazowych, wskazując główne przyczyny ich awarii oraz pokazano wybrane zdarzenia spowodowane wybuchami gazu na świecie i w Polsce.
Czasopismo
Rocznik
Tom
Strony
145--164
Opis fizyczny
Bibliogr. 20 poz., il., tab.
Twórcy
autor
- Łódź University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Łódź, Poland
autor
- Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
Bibliografia
- 1. I. Albrycht, “The analysis of gas infrastructure in Poland with regarts to the perspective of future energy challenges and the development of the unconventional gas”, Kościuszko Instytute, 2013.
- 2. Qiang Bai and Yong Bai, “Subsea Pipeline Design, Analysis and Installation”, Elsevier Inc., http://dx.doi.org/10.1016/B978-0-12-386888-6.00018-3, 2014.
- 3. E. Błazik-Borowa, A. Flaga, “Numerical Analysis of Interference Galloping of Two Identical Circular Cylinders”, Wind&Structures 1(3): 243-253, 1998.
- 4. Chun-Hung Chen, Yeong-Nain Sheen, Her-YungWang, “Case analysis of catastrophic underground pipeline gas explosion in Taiwan”, Engineering Failure Analysis 65: 39-47., 2016.
- 5. W.W. Chen, B.J. Shih, C.W. Wu, Y.C. Chen, “Natural gas pipeline system damages in the Ji-Ji earthquake (The City of Nantou)”, Proc of the 6th Int.Conf. on Seismic Zonation, 2000.
- 6. EQE summary report. The January 17. 1995 Kobe earthquake. EQE International, 1995.
- 7. Gas Pipeline Incidents, “9th Report of the European Gas Pipeline Incident Data Group” (period 1970–2013), 2015.
- 8. J.D. Hart, R. Saure, R.G. Wyche, G.R. Dennls, “Mitigation of Wind Induced Vibration of Arctic Pipeline Systems”, Proc. of the 11th Int. Conf. on Offshore Mechanics and Arstlc Engineering, Book No. H0746A 169-180, 1992.
- 9. J.F. Kiefner, M.J. Rosenfeld, “The Role of Pipeline Age in Pipeline Safety”, INGAA Foundation Final Report NO. 2012.04, 2012
- 10. Chio Lam, Wenxing Zhou, “Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database”, International Journal of Pressure Vessels and Piping 145: 29-40, 2016.
- 11. Do Hyung Lee, Byeong Hwa Kim, Hacksoo Lee, Jung Sik Kong, “Seismic behavior of a buried gas pipeline under earthquake excitations”, Engineering Structures 31: 1011-1023, 2009.
- 12. Ed.W.H. Moore, R. Duych, X.N. Long, H. Xiaoli, T. Lei, Z. Jie, S. Beningo, M. Chambers, C. Ford, K. Notis, M. Liu, “National Transportation Statistics”, 2016.
- 13. A.H. Mousselli, “Offshore Pipeline Design”, Analysis and Methods, PennWell Books, 1981.
- 14. Qiao Qiao, Guangxu Cheng, WeiWu, Yun Li, Hui Huang, ZefengWei, “Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors”, Engineering Failure Analysis 64: 126-143, 2016.
- 15. P. Russo, F. Parisi, N. Augenti, G. Russo, “Derivation of Risk Areas Associated with High-Pressure Natural- Gas Pipelines Explosions Including Effects on Structural Components”, Chemical Eng. Transactions 36: DOI:10.3303/CET1436049, 2014.
- 16. P. Russo, F. Parisi, “Risk-targeted safety distance of reinforced concrete buildings from natural-gas transmission pipelines”, Reliability Engineering and System Safety 148: 57-66, 2016.
- 17. Statistical yearbook of the regions in Poland.
- 18. J. Szer , P. Jagielski, “Overview of construction disasters caused by gas explosion”, Materiały budowlane 528:(8), 150-152, 2016.
- 19. D.A. Wood, “Competition is driving significant change in natural gas LNG and pipeline export markets”, Journal of Natural Gas Science and Engineering, http://dx.doi.org/10.1016/j.jngse.2016.06.042, 2016
- 20. Yafan Zhao, Mingda Song, “Failure analysis of a natural gas pipeline”, Engineering Failure Analysis 63: 61-71, 2016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f418a9b3-3d2a-4ed9-b9b3-8dada2002d53