PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hardening strain and recovery strain in nanocrystalline Ni investigated in tests with multiple stress changes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Dynamic recovery is interesting as it limits the maximal deformation strength of crystalline materials. Due to its small grain size, nanocrystalline Ni reaches its maximal strength after small strains < 0.1. It is shown that dynamic recovery contributes to strain and that its kinetics differs from that of hardening strain. Design/methodology/approach: The kinetics of recovery was studied by performing a large stress reduction suppressing thermally activated glide of the hardening type. The transition to a new quasi-stationary state at reduced strain rate and stress was accelerated by incremental increases of stress. Findings: During the transition the kinetics of deformation changes from that of recovery strain to the quasi-stationary one where hardening and recovery are coupled. The results are interpreted in terms of thermally activated hardening strain (in the grains) and thermally activated recovery strain (boundary mediated) linked by internal stresses. The activation volume of the hardening strain rate determined from the small stress increments is not inconsistent with the classical theory of thermally activated dislocation glide. Research limitations/implications: It is proposed to better characterize dynamic recovery by performing small stress changes in the period of dominating recovery strain to quantify the kinetics parameters of recovery strain. Practical implications: Disturbing deformation by sudden changes of stress is recommended as a suitable means to describe the kinetics of dynamic recovery. Recovery strains should enter the modeling of plastic deformation. This holds in particular for cases where dynamic recovery is prominent, e.g. at high stresses, high temperatures, and variable stresses (cyclic deformation, stress relaxation). Originality/value: The stress change method described in this work is generally applicable in deformation testing independent of the type of testing machine, where inelastic strains are measured at the usual accuracy.
Słowa kluczowe
Rocznik
Strony
53--59
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Photons for Engineering and Manufacturing, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
autor
  • Department of Materials Science and Engineering, University Erlangen-Nuremberg, D-91058 Erlangen, Germany
Bibliografia
  • [1] Z. Sun, S. Van Petegem, A. Cervellino, K. Durst, W. Blum, H. Van Swygenhoven, Dynamic recovery in nanocrystalline Ni, Acta Materialia 91 (2015) 91-100.
  • [2] W. Blum, J. Hausselt, G. König, Transient creep and recovery after stress reduction during steady state creep of AlZn, Acta Metallurgica 24 (1976) 293-297.
  • [3] J. Hausselt, W. Blum, Dynamic recovery during and after steady state deformation of Al-11wt%Zn, Acta Metallurgica 24 (1976) 1027-1039.
  • [4] T. Hasegawa, T. Yakou, U.F. Kocks, Length changes and stress effects during recovery of deformed aluminum, Acta Metallurgica 30 (1982) 235-243.
  • [5] M. Biberger, J.C. Gibeling, Analysis of creep transients in pure metals following stress changes, Acta Metallurgica 43 (1995) 3247-3260.
  • [6] T. Kruml, O. Coddet, J.L. Martin, The investigation of internal stress fields by stress reduction experiments, Materials Science and Engineering: A. 387/389 (2004) 72-75.
  • [7] T. Kruml, O. Coddet, J.L. Martin, About stress reduction experiments during constant strain-rate deformation tests, Zeitschrift für Metallkunde 96 (2005) 589-594.
  • [8] S.V. Petegem, S. Brandstetter, H.V. Swygenhoven, J.L. Martin, Internal and effective stresses in nanocrystalline electrodeposited Ni, Applied Physics Letters 89 (2006) 073102.
  • [9] D. Caillard, J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity, Elsevier, 2003.
  • [10] F. Dalla Torre, P. Spätig, R. Schäublin, M. Victoria, Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel, Acta Materialia 53 (2005) 2337-2349.
  • [11] Y.M. Wang, A.V. Hamza, E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nano- crystalline Ni, Acta Materialia 54 (2006) 2715-2726.
  • [12] Y.J. Li, J. Mueller, H.W. Höppel, M. Göken, W. Blum, Deformation kinetics of nanocrystalline nickel, Acta Materialia 55 (2007) 5708-5717.
  • [13] V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, M. Göken, Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al, Journal of Materials Research 26 (2011) 1421-1430.
  • [14] F. Mompiou, D. Caillard, M. Legros, H. Mughrabi, In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium, Acta Materialia 60 (2012) 3402-3414.
  • [15] J. Hu, J. Zhang, Z. Jiang, X. Ding, Y. Zhang, S. Han, J. Sun, J. Lian, Plastic deformation behavior during unloading in compressive cyclic test of nanocrystalline copper, Materials Science and Engineering: A 651 (2016) 999-1009.
  • [16] W. Blum, P. Eisenlohr, J. Hu, Interpretation of unloading tests on nanocrystalline Cu in terms of two mechanisms of deformation, Materials Science and Engineering: A 665 (2016) 171-174.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4182729-05fa-4880-9859-6d61e47db45d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.