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Abstract 

In this article, the authors present the results of numerical calculations. Calculations concern dimensionless 
carrying capacity and friction forces in a transverse journal bearing, lubricated by the oil of non-Newtonian 
properties. For analytical-numerical considerations a model of apparent viscosity changes based on exploitation time, 
pressure, temperature, shear rate was assumed The non-Newtonian properties of lubricating oil were characterized by 
increasing viscosity with increasing shear rate and described as an additional part in the constitutive 
equationβ3·tr(A1

2)A1.  
Analytical-numerical calculations were performed for smooth, non-porous plain bearing with full angle of wrap. 

Non-isothermal, laminar and fixed flow of lubricant in the lubrication gap of the journal bearing was assumed. 
Numerical calculations of hydrodynamic pressure distribution were made for Reynolds boundary conditions. The 
finite difference method was used to determine the Reynolds equation and the successive approximation method by 
taking into account the influence of pressure, temperature and non-Newtonian properties on the change of apparent 
viscosity. The results of the calculations are presented in the form of graphs and tables illustrating the influence of 
relative eccentricity and pressure, temperature and non-Newtonian properties on changes in the dimensionless load 
and friction force. Analysis of the obtained results illustrates the high-pressure effect on the increase of the carrying 
capacity and friction force for high relative eccentricities. A similar situation is by considering the non-Newtonian 
properties.  

Keywords: slide journal bearing, hydrodynamic pressure, load carrying capacity, friction force, non-Newtonian oil 
 
1. Introduction 
 

The issue of hydrodynamic lubrication of the journal bearings with the oils of Newtonian 
properties is already known and well researched. In the numerous papers following, influences at 
the lubrication oil viscosity: flow type, kind of sliding surfaces, temperature, pressure, exploitation 
time are taken into account.  

Much more less research concerns the issue of hydrodynamic lubrication of the journal 
bearings with the oils of non-Newtonian properties. Especially in terms of numerical calculations 
of hydrodynamic pressure, carrying capacities and friction forces. Lubricants for slider bearings 
lubrication, during exploitation time are subject of deterioration (ageing process) and those 
properties change into non-Newtonian [4, 10-12]. Depending on lubricant’s properties, different 
constitutive models are adopted, starting from the first order model [7, 13], through second order 
models [5, 8, 11], and ending with the third order models [1-3, 6, 9]. In this article, the authors 
attempted to determine the distribution of hydrodynamic pressure, carrying capacity, friction force 
taking into account apparent viscosity changes from pressure and non-Newtonian properties. For 
the analytical-numerical research, the first order constitutive mode has been adopted. This model 
takes viscosity increase by the shear rate increase into account.  
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2. Basic equations 
 

Solving of the journal bearing lubrication problem, with neglecting of the mass forces, includes 
solution of the basic equations, which are: conservation of momentum, flow continuity equation 
and conservation of energy in the following form [10-14]: 

 
d Div
dt

ρ =
v S , (1) 

 div( ) 0ρ =v , (2) 

 vd(c T)div( grad T) div( ) Div
d t

κ + − = ρvS v S ,  (3) 

where: 
cv  – specific heat at constant volume [J/(kg·K)], 
t  – time [s],  
v  – oil velocity vector [m·s−1],  
T  – oil temperature distribution in the lubrication gap [K],  
ρ  − oil density [kg·m−3],  
κ  – lubrication oil conductivity [W/(m·K)].  

Relationship, which describes correlation between coordinates of stress tensor S and shear rate 
coordinates A1 of the lubrication oil of non-Newtonian properties, was assumed in the following 
form: 

 2
3· 1 1 p 1p  [ tr )]  ( p= − + η + β − + η=S I A A I A ,   where    2

3· 1p tr ( )η = η + β A , (4) 

where: 
I  – unity tensor, 
p  – hydrodynamic pressure [Pa], 
β3  – material coefficient [Pa·s3], 
η  – dynamic viscosity coefficient [Pa·s], 
ηp  – apparent viscosity coefficient [Pa·s]. 

In the equation (4) tensor A1, is described by the following relation [1-3], [5-8], [10-14]: 

 T
1 ,   grad( )≡ + ≡A L L L v , (5) 

where:  
L  − tensor of the velocity vector gradient [s−1].  

Apparent viscosity can be presented as a function dependent on the temperature, pressure, 
exploitation time and shear rate ηp=ηp(p, T, t, θ). Authors propose to present apparent viscosity ηp 
as a product of the dimensional value ηο and dimensionless dependencies of the several influences: 

 

p o 1 p1 1

T o t t1 1Br 1

p p p
p o p1 p1 1 1 1 1p 1T 1t 1p

(T T ) t tQ T 23
1T 1t 1 1

o

, , , ( , z) a e a e ,

( , z, r) b e b e , (t) d e d e , tr( ) ,

δ ⋅ ⋅ δ
θ

−δ − δ ⋅ δ ⋅−
θ

η = η ⋅η η = η + η η = η ⋅η ⋅η η ϕ = ⋅ = ⋅

 β
η ϕ ≡ ⋅ = ⋅ η ≡ ⋅ = ⋅ η =  η 

A
 (6) 

where: 
η1  – dimensionless function of the viscosity changes, dependent on the pressure, temperature and 

exploitation time, 
η1p  – dimensionless function of the viscosity changes, dependent on the pressure, 
η1t  – dimensionless function of the viscosity changes, dependent on the exploitation time, 
η1T  – dimensionless function of the viscosity changes, dependent on the temperature, 
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η1θ  – dimensionless function of the viscosity changes, dependent on the shear rate, 
ηp1  – dimensionless function of the apparent viscosity changes, 
δT, δt, δp – dimensional values of the material coefficients which include viscosity changes 

in temperature, time and pressure, 
δt1, δp1  – dimensionless values of the material coefficients which include viscosity changes 

in time and pressure, 
QBr – dimensionless coefficient of the viscosity changes in temperature T, 
T1 – dimensionless function of the oil temperature, 
To  – dimensional characteristic value of the temperature [K], 
a, b, d – dimensionless coefficients which include different values of the characteristic viscosity 

ηo designated in the research on the rheometer, depending on the different influences 
(temperature, pressure, exploitation time).  

In order to make several quantities dimensionless and to estimate an order of magnitude of 
each part of the system of equations: conservation of momentum, flow continuity, conservation of 
energy and also track of the tensor A1, the following dimensional and dimensionless designations 
and characteristic numbers were assumed [11-14]:  

t=to·t1,  r=R(1+ψr1),  z= bz1,  hp=hp1·ε,  p=pop1, κ=κoκ1, ρ=ρo·ρ1,  vφ=Uv1,  vr=Uψv2, ε=R'–R, 

 z 3
1

Uv v
L

= , 310
R

−ε
ψ ≡ ≅ , 1

bL
R

≡ , o

o

URe ερ
≡

η
, o

o 2

RUp η
≡

ε
, 

o

RStr
Ut

≡ , T=To+ToBrT1, (7) 

2
o v

o

cGz ε ρ ω⋅
=

κ
, 

2
o

o o

UBr
T
η

≡
κ

, Br o T0 Q BrT 1< ≡ δ < , 

where: 
Br  – dimensionless Brinkman number,  
Gz  – Graetz number, which describes forced heat convection, 
L1  – dimensionless bearing length, 
R  – journal radius [m], 
R'  – bushing radius [m], 
Re  – Reynolds number, which describes type of the flow, 
Str  – Strouhal number, which describes unsteady flow, 
U  – dimensional value of the perimeter velocity [m·s−1],  
2b  – bearing length [m], 
hp – dimensional height of the lubrication gap, which depends on relative eccentricity and axes 

skew [m],  
hp1 – dimensionless height of the lubrication gap, which depends on relative eccentricity and axes 

skew,  
po  – dimensional value of the characteristic pressure [Pa], 
p1  – dimensionless value of the hydrodynamic pressure, 
r  – radial coordinate in the lubrication gap [m],  
r1  – dimensionless radial coordinate, 
to  – dimensional time [s], 
t1  – dimensionless time,  
z  – lengthwise coordinate [m], 
z1  – dimensionless lengthwise coordinate, 
ε  – radial clearance [m], 
κo  – dimensional value of the lubricants heat conduction coefficient [W·m−1·K−1], 
κ1  – dimensionless value of the lubricants heat conduction coefficient, 
λ − relative eccentricity,  
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υo – dimensional value of the lubricants convective heat transfer coefficient [W·m−2·K−1], 
υ1 – dimensionless value of the lubricants convective heat transfer coefficient, 
ρo  – dimensional value of the lubricants density [kg·m−3], 
ρ1  – dimensionless value of the lubricants density, 
ϕ  − perimeter coordinate,  
ψ  – dimensionless value of the relative radial clearance,  
ω  – angular velocity of the bearings journal [s−1]. 

By neglecting parts in order of relative radial clearance ψ≈0.001 we get: 

 
2 22

2 31
1 2 2

1 1 1

vv2U 1tr( )
r L r

    ∂∂
 = +   ε ∂ ∂     

A . (8) 

By the substitution of the estimated equation (16) into equation (106) we get dimensionless 
function of the viscosity changes, depending on non-Newtonian properties in a form: 

 
2 2 2 22

3 3 31 1
1 2 2 2

o 1 1 1 1 1 1

v vv vU 1 12 2 D
r L r r L rΘ β

             β ∂ ∂∂ ∂      η = + = ⋅ +       η ε ∂ ∂ ∂ ∂                   
. (9) 

where:  
2

3
2

o

UDβ

β
=

η ε
 − dimensionless number. 

It was assumed for the further analysis of the basic equations (1)-(3) that dimensionless heat 
transfer coefficient κ1=1, dimensionless convective heat transfer coefficient υ1=1 and dimension-
less density ρ1=1 are constant and independent on the temperature and pressure [4, 5, 9, 21]. 
Neglected are the inertia forces in the momentum equations – elements multiplicated by Re·ψ. The 
elements, which are multiplicated by the Graetz number Gz, concern forced convection and are 
also neglected. This neglection is reasonable in the low- and medium speed bearings [4, 5, 9, 21]. 
Another assumption is steady and stationary flow, so the elements, which include derivatives 
relative to time, were neglected. Neglected were also parts in the same order as relative radial 
clearance ψ≈0.001. After these simplifications, momentum equations get a form [11-14]: 

 1 1
p1

1 1

p v0
r r

 ∂ ∂∂
= − + η ∂ϕ ∂ ∂ 

, (10) 

 1

1

p 0
r

∂
=

∂
, (11) 

  31
p1

1 1 1

vp0
z r r

 ∂∂ ∂
= − + η ∂ ∂ ∂ 

, (12) 

 31 2
2

1 1 1

vv v 1 0,
r L z

∂∂ ∂
+ + =

∂ϕ ∂ ∂
 (13) 

 
2 2

31 1
1 p1 2

1 1 1 1 1

vT v 1 0
r r r L r

      ∂∂ ∂∂
 κ + η + =     ∂ ∂ ∂ ∂       

,  (14) 

where:  0<r1<hp1,  0<ϕ<2π, −1< z1<+1. 
Characteristic dimensionless height of the lubrication gap hp1(φ,z) in the cylindrical bearing, 

assumed as a function of  the perimeter- and longitudinal variable, so nonparallelism of the 
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bushing axis in relation to journal axis was taken into account.  Dimensional height hp of the 
lubrication gap depends on relative eccentricity λ and nonparallelism of the journal axis in relation 
to bushing axis γ [11]:  

 p 1h ( , z) 1 cos( ) a z cos( )γ ϕ = ε ⋅ + λ ⋅ ϕ + ϕ  , ( )1La tanγ = γ
ψ

, (15) 

where: 
aγ  – dimensionless skew coefficient. 

With the assumption in the first calculation step, that the apparent viscosity does not depend on 
pressure, temperature and shear rate, we designate from the system of equations (10)-(14), by the 
proper integration and applying of the classical boundary conditions, dimensionless components of 
the velocity vector, Reynolds-type equation and dimensionless temperature. From the Reynolds-
type equation, with the proper numerical method, we designate hydrodynamic pressure. 
Designated in the first step values of the pressure will be used to designate the components of the 
velocity vector, temperature and apparent viscosity in the second calculation step. From the second 
step, we will get components of the velocity vector and temperature. These values we will use to 
designate adjusted apparent viscosity and once again, we designate hydrodynamic pressure from 
the Reynolds-type equation. We proceed these activities until we get convergent results. 

For the oil velocity vector components, by the stationary lubrication, the following boundary 
conditions are assumed: 

 1 2 3 1 p1

1 2 3 1

v 0, v 0, v 0 na panewce r h ,

v 1, v 0, v 0 na czopie r 0.

= = = =

= = = =
. (16) 

For the hydrodynamic pressure distribution in oil, by the stationary lubrication, the following 
Reynolds boundary conditions are assumed in a form [10-14]: 

 1p 0= for ϕ=ϕp,  1p 0=  for ϕ≥ϕk, 1p 0∂
=

∂ϕ
 for ϕ=ϕk, 1p 0=  for z1=+1 and z1= −1. (17) 

 After designation of the velocity vector components from the equation (10)-(13), using 
boundary conditions (16) and integration of the equation (13) after that and applying of the proper 
boundary condition (16), the following Reynolds-type equation has been obtained:  

  
33
p1p1 p11 1

2
p1 1 1 p1 1

hh hp p1 6 .
L z z

    ∂  ∂ ∂∂ ∂
+ =     ∂ϕ η ∂ϕ ∂ η ∂ ∂ϕ         

 (18) 

Temperature distribution in the lubrication gap we get by the double integration of the equation 
(14) and applying of the proper boundary conditions [11]: 

 

( ) ( )

2 21
1 1 1 p1 1c p1 p1

22
2 2 4 31 1

p1 1 3 p12 2
1 p1 1 1

p1 1T (r , , z ) 1 (1 2s) q h s h s (3 3s s )
2 6

p p1 1 1 1v v h s (s 2) ,
2 L 24 L z

 ∂
ϕ = + η − − − − + + ∂ϕ 

     ∂ ∂
 − η + + + −    η ∂ϕ ∂      

 (19) 

where s≡r1/hp1 while 0≤s≤+1, 0≤ϕ<2π, −1≤z1≤+1, q1c – dimensionless heat flow in the journal.  
With the assumption s=1, equation (19) returns unknown function of the temperature 

distribution on the bearing f1p, dependent on the angle of wrap and bearing length. 
Carrying capacity and friction force are to be designated from the following relation [11, 14]: 
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2
1 oC C bR /= ⋅ η ω ψ  where 

k k
2 2

1 1

1 1 1 1 1
1 0 1 0

p cos sin d dz p cos cos d dzC
ϕ ϕ+ +

− −

      
= γ ϕ ϕ + γ ϕ ϕ                  

∫ ∫ ∫ ∫ ,  

 
1 p1

1
1

1 o 1 p1 1
11 0 r h

vFr Fr bR / Fr d dz
r

ϕ+

− =

  ∂ = ⋅ η ω ψ = = η ϕ ∂   
∫ ∫ . (20) 

 
3. Numerical calculations 
 

Numerical calculations of the hydrodynamic pressure and carrying capacity and friction force 
after that, have been proceed for the relative eccentricity from λ = 0.1; to λ = 0.9, dimensionless 
bearing length L1 = 1 and the angle between journal and bushing axis γ = 0. Calculations have 
been performed in Mathcad 15 software, using own calculation procedures, with the assumption 
of the exploitation time of τ = 20,000 km, coefficient δτ = 8·10–6 km–1 dimensionless number 
Deβ= = 0.0064, and dimensionless values of the material coefficients, which are taking viscosity 
changes in pressure δp1 = 0.00756 into account, dimensionless coefficient of the viscosity changes 
in temperature QBr = 0.1575, dimensionless heat flow qc1 = −0.5. 

Changes of the dimensionless carrying capacity and friction force in the function of relative 
eccentricity and kind of influences are presented on Fig. 1. Numerical values of these changes and 
theirs percentage changes are presented in Tab. 1. 
 

a)  

 
 

b)  

 
Fig. 1. Carrying capacity changes (a) and friction force changes (b) in a function of relative eccentricity and type 

of influence on the viscosity  
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Tab. 1. Numerical values and percentage changes of the dimensionless carrying capacity and friction force in 
a function of relative eccentricity and type of influence on the oil viscosity changes 

 Dimensionless load carrying capacity C1 
Relative eccentricity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
ηp1 – const 0.540 1.137 1.852 2.776 4.074 6.037 9.416 16.430 38.450 

ηp1 = η(T1) 0.455 0.961 1.570 2.365 3.493 5.219 8.225 14.540 34.560 

ηp1 = η(p1) 0.541 1.142 1.866 2.812 4.144 6.221 9.888 18.250 60.580 

ηp1 = η(θ) 0.546 1.151 1.879 2.830 4.171 6.247 10.01 18.620 60.080 

ηp1 = η(T1, p1, θ) 0.463 0.979 1.608 2.441 3.653 5.593 9.295 18.660 100.600 
 Dimensionless friction forces FR1 
ηp1 – const  14.84 15.15 15.71 16.58 17.89 19.86 22.99 28.57 41.77 

ηp1 = η(T1) 13.15 13.44 13.96 14.77 15.98 17.82 20.75 26.02 38.60 

ηp1 = η(p1) 15.60 15.93 16.53 17.46 18.86 20.98 24.40 30.72 49.13 

ηp1 = η(θ) 15.77 16.11 16.72 17.69 19.15 21.40 25.11 32.32 55.20 

ηp1 = η(T1, p1, θ) 13.34 13.67 14.23 15.12 16.48 18.61 22.21 29.71 64.27 
 Percent change in the dimensionless load carrying capacity C1 

∆C1(T1) [%] 15.7 15.5 15.2 14.8 14.3 13.5 12.6 11.5 10.1 

∆C1(p1) [%] –0.2 –0.4 –0.6 –1.3 –1.7 –3.0 –5.0 –11.1 –57.6 

∆C1(θ) [%] –1.1 –1.2 –1.5 –1.9 –2.4 –3.5 –6.3 –13.3 –56.3 

∆C1(T1, p1, θ) [%] 14.3 13.9 13.2 12.1 10.3 7.4 1.3 –13.6 –161.6 

 Percent change in the dimensionless friction forces FR1 

∆FR1(T1) [%] 11.4 11.3 11.1 10.9 10.7 10.3 9.7 8.9 7.6 

∆FR1(p1) [%] –5.1 –5.1 –5.2 –5.3 –5.4 –5.6 –6.1 –7.5 –17.6 

∆FR1(θ) [%] –6.3 –6.3 –6.4 –6.7 –7.0 –7.8 –9.2 –13.1 –32.2 

∆FR1(T1, p1, θ) [%] 10.1 9.8 9.4 8.8 7.9 6.3 3.4 –4.0 –53.9 
 
Calculation example of the percentage changes of the dimensionless carrying capacity or 

friction force: 

( ) ( )( ) ( ) ( )( )1 1 1 R1 R1 1
1 1 R1 1

1 R1

C ( const.) C T F ( const.) F p
C T 100%; F p 100%.

C ( const.) F ( const.)
η − − η η − − η

∆ = ⋅ ∆ = ⋅
η − η −

  

 
4. Conclusions 
 

Analysing the obtained results can be stated: 
– Carrying capacity (friction force) decreases in case of taking viscosity changes in temperature 

into account, in comparison to the carrying capacity (friction force) without taking viscosity 
changes and non-Newtonian properties into account. The biggest changes can be observed for 
the low relative eccentricities and the smaller by the highest relative eccentricities.  

– Carrying capacity (friction force) increases in case of taking viscosity changes in pressure into 
account in comparison to the carrying capacity (friction force) without taking viscosity changes 
and non-Newtonian properties into account. The biggest changes can be observed for the high 
relative eccentricities and the smaller by the lower relative eccentricities. These changes may 
result from the assumed exponential model of the viscosity changes in pressure. 
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– Carrying capacity (friction force) increases in case of taking non-Newtonian properties into 
account in comparison to the value of carrying capacity (friction force) without taking viscosity 
changes and non-Newtonian properties into account. The biggest changes can be observed for 
the high relative eccentricities and the smaller by the lower relative eccentricities. The non-
Newtonian properties were taken into account only by the part with the pseudo-viscosity 
coefficient β3. 
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