PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental identification of the force and moment characteristic of symmetrically and non-symmetrically profiled annular seals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern turbomachinery, the performance and reliability is often limited by shaft vibrations induced by fluid film forces and moments of (i) plain or (ii) profiled annular seals. Therefore, these narrow annuli are mainly responsible for the overall system behaviour, i.e. safe operation and maintenance intervals. However, many studies focus only on the characteristics from the forces due to the translational motion, although the influence of the rotordynamic tilt and moment coefficients is well known. Therefore, these additional coefficients are much less researched. Especially, for profiled seals, the availability of reliable experimental data for validation purpose is rare. To overcome this fact, a test rig is operated at the Chair of Fluid Systems at the Technische Universität Darmstadt. The generic experiments presented here investigate the force and moment characteristic of plain, symmetrically profiled and non-symmetrically profiled annular seals within the relevant parameter range for turbulent flows in pumps. The investigations focus on the influence of the annulus length as well as the pressure difference across the annulus.
Rocznik
Strony
art. no. e147062
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Chair of Fluid Systems, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
  • Chair of Fluid Systems, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
Bibliografia
  • [1] M.M.G. Kuhr, G. Ludwig, and P.F. Pelz, “Measurement and simulation of the dynamic characteristics of plain and profiled annular seals,” IOP Conference Series: Earth and Environmental Science, vol. 774, no. 1, p. 012073, 2021, doi: 10.1088/1755-1315/774/1/012073.
  • [2] A.C. Hagg, “The influence of oil-film journal bearings on the stability of rotating machines,” J. Appl. Mech., vol. 13, no. 3, pp. A211–A220, 1946, doi: 10.1115/1.4009564.
  • [3] A.C. Hagg and G.O. Sankey, “Some dynamic properties of oil-film journal bearings with reference to the unbalance vibration of rotors,” J. Appl. Mech., vol. 23, no. 2, pp. 302–306, 1956, doi: 10.1115/1.4011305.
  • [4] D.W. Childs, “The space shuttle main engine high-pressure fuel turbopump rotordynamic instability problem,” J. Eng. Power, vol. 100, no. 1, pp. 48–57, 1978, doi: 10.1115/1.3446326.
  • [5] D.W. Childs, C.C. Nelson, T. Noyes, and J.B. Dressman, “A high-Reynolds-number seal test facility: Facility description and preliminary test data,” NASA. Lewis Research Center Rotordyn. Instability Probl. in High-Performance Turbomachinery, 1982. [Online]. Available: https://ntrs.nasa.gov/citations/19830007370
  • [6] S.R. Lang, Effiziente Berechnung von Gleitlagern und Dichtspalten in Turbomaschinen, ser. Forschungsberichte zur Fluidsystemtechnik. Aachen: Shaker Verlag, 2018, vol. Band 18.
  • [7] M.M.G. Kuhr, Dynamische Eigenschaften axial durchströmter Ringspalte, 1st ed., ser. Forschungsberichte zur Fluidsystemtechnik. Düren: Shaker Verlag, 2022, vol. Band 29, doi: 10.2370/9783844086102.
  • [8] M.M.G. Kuhr, R. Nordmann, and P.F. Pelz, “Dynamic force and moment characteristics of annular gaps - simulation results and evaluation of the relevance of the tilt and moment coefficients,” J. Tribol., vol. 145, no. 1, p. 011801, 2022, doi: 10.1115/1.4055180.
  • [9] M.M.G. Kuhr, “Identification of the dynamic force and moment characteristics of annular gaps using linear independent rotor whirling motions,” Mech. Syst. Signal Proc., vol. 187, p. 109936, 2023, doi: 10.1016/j.ymssp.2022.109936.
  • [10] M.M.G. Kuhr, S.R. Lang, and P.F. Pelz, “Static force characteristic of annular gaps – experimental and simulation results,” J. Tribol., vol. 144, no. 11, p. 111804, 2022, doi: 10.1115/1.4054792.
  • [11] D.W. Childs, Turbomachinery rotordynamics: Phenomena, modeling, and analysis, ser. A Wiley Interscience publication. New York: Wiley, 1993.
  • [12] F. Simon and J. Frêne, “Analysis for incompressible flow in annular pressure seals,” J. Tribol., vol. 114, no. 3, pp. 431–438, 1992, doi: 10.1115/1.2920902.
  • [13] F. Simon and J. Frêne, “Rotordynamic coefficients for turbulent annular misaligned seals,” Rotating machinery - Dynamics; Proceedings of the 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3), pp. 207–222, 1992.
  • [14] L. San Andrés, “Effect of shaft misalignment on the dynamic force response of annular pressure seals,” Tribol. Trans., vol. 36, no. 2, pp. 173–182, 1993, doi: 10.1080/10402009308983146.
  • [15] L. San Andrés, “The effect of journal misalignment on the operation of a turbulent flow hydrostatic bearing,” J. Tribol., vol. 115, no. 3, pp. 355–363, 1993, doi: 10.1115/1.2921643.
  • [16] L. San Andrés, Z. Yang, and D.W. Childs, “Thermal effects in cryogenic liquid annular seals—part ii: Numerical solution and results,” J. Tribol., vol. 115, no. 2, pp. 277–284, 1993, doi: 10.1115/1.2921002.
  • [17] E. Storteig, “Dynamic characteristics and leakage performance of liquid annular seals in centrifugal pumps,” Ph.D. dissertation, Norwegian University of Science and Technology, NTNU, Trondheim, 1999.
  • [18] N. Gibbons, C. Watson-Kassa, C. Goyne, and M. He, “Circumferentially grooved seal flow field analysis based on effective film thickness to improve bulk flow models,” J. Eng. Gas. Turbines Power, vol. 144, no. 11, p. 111021, 2022, doi: 10.1115/1.4055412.
  • [19] N. Gibbons and C. Goyne, “Form shear stress (fss) correction in bulk flow analysis of grooved seals based on effective film thickness,” J. Tribol., vol. 146, no. 1, p. 014401, 2023, doi: 10.1115/1.4063190.
  • [20] Y. Kanemori and T. Iwatsubo, “Experimental study of dynamic fluid forces and moments for a long annular seal,” J. Tribol., vol. 114, no. 4, pp. 773–778, 1992, doi: 10.1115/1.2920947.
  • [21] Y. Kanemori and T. Iwatsubo, “Forces and moments due to combined motion of conical and cylindrical whirls for a long seal,” J. Tribol., vol. 116, no. 3, pp. 489–498, 1994, doi: 10.1115/1.2928871.
  • [22] T. Neumer, Entwicklung einer Versuchsanlage mit aktiver Magnetlagerung zur Parameteridentifikation von Fluid-Struktur-Interaktionen in Strömungsmaschinen: Zugl.: Kaiserslautern, Univ., Diss, ser. Fortschritt-Berichte VDI Reihe 11, Schwingungstechnik. Düsseldorf: VDI-Verl., 1994, vol. 203.
  • [23] M. Matros, A. Ziegler, and R. Nordmann, “Fluid structure interactions in annular seals of centrifugal pumps,” Tribol. Trans., vol. 38, no. 2, pp. 353–363, 1995, doi: 10.1080/10402009508983415.
  • [24] D.W. Childs and K. Hale, “A test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings,” J. Tribol., vol. 116, no. 2, pp. 337–343, 1994, doi: 10.1115/1.2927226.
  • [25] J. Alex Moreland, D.W. Childs, and J.T. Bullock, “Measured static and rotordynamic characteristics of a smooth-stator/grooved-rotor liquid annular seal,” J. Fluids Eng., vol. 140, no. 10, p. 101109, 2018, doi: 10.1115/1.4040762.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4052c87-ce98-4121-8161-19643cb6cbfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.