Marcin PARCHOMIUK Grzegorz GROCHOWSKI

PRZETWORNICA STATYCZNA Z TRZYPOZIOMOWYMI PRZEKSZTAŁTNIKAMI TYPU NPC DO ZASTOSOWAŃ TRAKCYJNYCH – – SYMULACJE I WYNIKI EKSPERYMENTALNE

STRESZCZENIE W artykule przedstawiono przetwornicę statyczną z izolacją transformatorową z wykorzystaniem struktur wielopoziomowych typu NPC (ang. Neutral Point Clamped). Zaprezentowano wybrane wyniki badań symulacyjnych i laboratoryjnych przekształtnika AC/DC i DC/AC w topologii 3-poziomowej.

Słowa kluczowe: przetwornica statyczna, przekształtnik wielopoziomowy, NPC, dioda poziomując

1. WSTĘP

W dniu 1 stycznia 2007 roku w krajach Unii Europejskiej nastąpiło otwarcie rynku kolejowych przewozów towarowych w Europie dla wszystkich operatorów kolejowych. Rynek przewozów międzynarodowych dopuszczając kabotaż. "Przewozy kabotażowe polegają na tym, że przewoźnik zarejestrowany za granicą i wykonujący w ramach przewozów międzynarodowych przewozy w Polsce, ma prawo do zabierania pasażerów na polskich stacjach". W praktyce okazało się, że przewoźnicy muszą uzyskać krajowe licencje na przewozy, certyfikaty bezpieczeństwa oraz dostosować tabor do sieci elektrycznej danego kraju. W poszczególnych krajach sieć trakcyjna zasilana jest napięciem przemiennym lub stałym. Ze względu na realizowanie przewozów na terenie państwa z innym systemem zasilania, wymagane jest dopasowanie taboru, szczególnie lokomotywy, do systemu zasilania danego kraju.

mgr inż. Marcin PARCHOMIUK; mgr inż. Grzegorz GROCHOWSKI e-mail: [m.parchomiuk; g.grochowski]@iel.waw.pl

> Zakład Przekształtników Mocy, Instytut Elektrotechniki, ul. M. Pożaryskiego 28, 04-703 Warszawa.

PRACE INSTYTUTU ELEKTROTECHNIKI, zeszyt 269, 2015

W ubiegłych latach w Zakładzie Przekształtników Mocy (NPM) Instytutu Elektrotechniki wykonano, zbadano w laboratorium oraz wdrożono do eksploatacji prototyp przetwornicy PSI-80 o mocy 80 kW na zmodernizowanej lokomotywie 3E – 100 oraz prototyp przetwornicy PSI – 160x2 na lokomotywie DRAGON.

W urządzeniach tych zastosowane są tranzystory IGBT o napięciu 6,5 kV. Są to elementy o wysokiej cenie jednostkowej oraz są trudno dostępne na rynku. Wprowadzenie układów wielopoziomowych pozwala stosować w przetwornicach tranzystory o niższej klasie napięciowej, które są tańsze oraz łatwiej dostępne.

TABELA 1	
----------	--

Zróżnicowanie	sieci	zasilającej	linie	kolejowej
w Europie [1]				

DC	1500 V	15,320 km	6,5%
DC	3000 V	72,105 km	30,3%
AC	15 kV/16 2/3 Hz	32,390 km	13,6%
AC	25 kV/50 Hz	106,437 km	44,8%
inne		11,350 km	4,8%

Rys. 1. Schemat blokowy przetwornicy statycznej wielosystemowej dla lokomotyw elektrycznych z falownikiem 3x400 V 50 Hz z izolacją transformatorową

Na rysunku 1 przedstawiono przykład nowoczesnego rozwiązania przetwornicy statycznej wielosystemowej, zasilanej napięciem 25 kV AC 50 Hz, 15 kV AC 16 2/3 Hz lub 3 kV DC. Podobne rozwiązania można znaleźć w literaturze [1-15]. Przetwornica zasilana jest poprzez transformator trakcyjny (TR1) instalowany na lokomotywie, gdzie napięcie wyjściowe wynosi do 2 kV AC. Napięcie podawane jest na układ aktywnego

prostownika (1), który stabilizuje napięcie wyjściowe na poziomie 3 kV. Dalej zastosowano falownik 3-fazowy (3), który zasila poprzez dławiki transformator izolujący (TR2). Napięcie wtórne transformatora podawane jest do zacisków wyjściowych poprzez filtr wygładzający (4). W ten sposób wytwarzane napięcie 3x400 V AC 50 Hz dostarczane jest do urządzeń potrzeb własnych w pojeździe trakcyjnym. W przypadku sieci 3 kV prądu stałego, przetwornica zasilana jest bezpośrednio poprzez dławik wejściowy, gdzie napięcie trakcyjne podawane jest na filtr falownika napięcia (2).

Celem pracy było opracowanie modelu przetwornicy trakcyjnej do zasilania potrzeb własnych w lokomotywie, zasilanej z napięcia stałego 3 kV na napięcie 3x400 V AC. Układ ma być przygotowany do bezpośredniego włączania silników indukcyjnych napędzających sprężarki i wentylatory.

2. MODEL EKSPERYMENTALNY PRZETWORNICY STATYCZNEJ

Opracowano model przetwornicy statycznej o strukturze pokazanej na rysunku 2. Składa się ona z dwóch przekształtników AC/DC i DC/AC połączonych obwodem prądu stałego (DC-link). Przekształtnik AC/DC jest to dwukierunkowy aktywny prostownik, zbudowany z dwóch gałęzi 3-poziomowych z diodami poziomującymi (ang. diode-clamped). Układ zasilono napięciem 400 V AC, natomiast w obwodzie prądu stałego napięcie stabilizowane jest na poziomie 600 V. Przekształtniki połączone są wspólną pojemnością. Przekształtnik DC/AC jest to 3-fazowy falownik napięcia o podobnej strukturze jak przekształtnik AC/DC. Przekształtnik może zasilać silniki indukcyjne napięciem 3x400 VAC 50 Hz z możliwością bezpośredniego załączenia obciążenia oraz rozruchu częstotliwościowego (miękkiego rozruchu, ang. softstart). Zastosowanie transformatora stanowi separację galwaniczną przekształtnika, jak również w konfiguracji trójkąt-gwiazda DY pozwala dodatkowo uzyskać zwiększenie poziomów napięcia wyjściowego z 3 do 5 wynikających zprzesunięć fazowych w transformatorze. Przekształtnik DC/AC może być również zasilany zewnętrznym napięciem stałym 600 V przez dławik wejściowy.

Rys. 2. Model przetwornicy statycznej

2.1. Badania symulacyjne przetwornicy

Poniżej przedstawiono wybrane wyniki symulacji obwodów głównych przekształtnika AC/DC. Zamieszczono przebiegi prądów oraz napięć wejściowych i wyjściowych z odbiornikiem o charakterze rezystancyjnym przy częstotliwości modulacji 10 kHz. Przebiegi pokazują pracę układu przy zmianie obciążenia. Na początku pokazana jest praca z małym obciążeniem układu, później następuje skokowe zwiększenie obciążenia i powrót do obciążenia początkowego.

Rys. 3. Wyniki symulacji przekształtnika AC/DC z obciążeniem rezystancyjnym (częstotliwość modulacji 10 kHz): a) napięcie i prąd wejściowy, b) napięcie na przekątnej mostka, c) napięcie wyjściowe

Wyniki badań symulacyjnych przekształtnika DC/AC przedstawiono na oscylogramach poniższych (rys. 4). Na przebiegach 4a i 4b pokazano napięcie i prądy wejściowe transformatora. Oscylogramy 4c i 4d pokazują napięcie i prądy na wyjściu transformatora. Na przebiegu 4c pokazano napięcie wyjściowe ze zwiększonąliczbą poziomów napięcia, uzyskanych za sprawą przesunięć fazowych w transformatorze.

Rys. 4. Wyniki symulacji przekształtnika DC/AC z odbiornikiem RL (częstotliwość modulacji 1 kHz): a) napięcie, b) prądy na wejściu transformatora, c) napięcie, d) prądy na wyjściu transformatora

2.2. Identyfikacja pierwszej harmonicznej

Do wyznaczenia podstawowej harmonicznej wykorzystano algorytm SDFT (ang. SlidingDiscrete Fourier transform). SDFT pozwala na wykonanie algorytmu DFT w czasie miedzy kolejnymi próbkami sygnału wejściowego, z *N*-punktowego przesuwającego się okna próbek. Okno czasu przesuwane jest naprzód o jedna próbkę, i następnie jest obliczane nowe *N*-punktowe DFT. Wartości nowego DFT są za każdym razem obliczane bezpośrednio z wyników poprzedniego. Algorytm można przedstawić za pomocą wzoru (1):

1 (3)

$$S_k(n) = S_k(n-1) * e^{(j2\pi k/N)} - x(n-N) + x(n)$$
(1)

gdzie:

Sk(n) – nowym elementem widma, Sk(n-1) – poprzednim elementem widma.

Rys. 5. Struktura algorytmu SDFT

Dyskretna Transformata Fouriera przekształca skończony ciąg próbek sygnału w ciąg harmonicznych, opisana jest wzorem (2).

$$F(n) = \sum_{k=0}^{N-1} x(k) e^{\frac{-j2\pi kn}{N}}$$
(2)

Do obliczeń wykorzystano algorytm FFT (ang. Fast Fourier Transform). FFT w porównaniu z DFT jest szybszym algorytmem, wymaga bowiem mniej operacji. Dla DFT wymagane jest N^2 operacji, natomiast FFT potrzebuje $N \log_2(N)$ operacji.

Sama idea algorytmu FFT opiera się na tzw. lemacie Danielsona-Lanczosa. Stwierdzono, że pojedyncze DFT o długości N jest równoważne sumie dwóch transformat o długości N/2, gdzie jedna z nich jest złożona z nieparzystych punków spośród oryginalnych, a druga z parzystych (3).

$$F(n) = \sum_{k=0}^{\frac{N}{2}-1} x(2k) e^{\frac{-j2\pi kn}{\frac{N}{2}}} + W_N^n \sum_{k=0}^{\frac{N}{2}-1} x(2k+1) e^{\frac{-j2\pi kn}{\frac{N}{2}}}$$
(3)

Najpopularniejszą wersją FFT jest FFT o podstawie 2. Jest to bardzo efektywna operacja, jednak wektor próbek wejściowych musi mieć długość $N=2^k$, gdzie k to liczba naturalna. Wynik otrzymuje się na drodze schematycznych przekształceń, opartych o tak zwane struktury motylkowe.

Rys. 6. Wynik działania algorytmu SDFT przy napięciu zasilającym w kształcie: a) trójkąta, b) prostokąta

Na rysunku 6 pokazano wyniki testowania układu do wyznaczenia podstawowej harmonicznej. W celu potwierdzenia poprawności działania algorytmu przetestowano m.in. sygnały trójkątne i prostokątne. W obu przypadkach układ zgodnie z założeniem wyznaczał wybraną harmoniczną. Na przebiegach zamieszczonych poniżej przedstawiono wyliczanie pierwszej harmonicznej.

2.3. Algorytm sterowania

Do sterowania przekształtnikami AC/DC i DC/AC wykorzystano algorytm pokazany na rysunku 7. Na podstawie pomiarów napięcia wejściowego AC wyliczana jest podstawowa harmoniczna napięcia. Do tego celu wykorzystywana jest metoda SDFT opisana powyżej. Amplituda napięcia jest przemnażana z sygnałem wyjściowym regulatora PI, w którym porównywane jest napięcie wyjściowe DC z napięciem zadanym. Od otrzymanego iloczynu odejmowana jest wartość chwilowa prądu wejściowego. Otrzymana różnica podawana jest na sinusoidalny modulator szerokości impulsów trójkątna falą nośną (ang. CB-SPWM).

Układ sterowania przekształtnikiem DC/AC przedstawiono na rysunku 7b. Pomierzone wartości chwilowe prądów i napięć podawane są na regulatory PI. W zależności od realizowanych założeń możliwa jest stabilizacja prądu lub napięcia. Otrzymany sygnał podawany jest na modulator PWM lub wektorowy SVPWM (ang. Space Vector Pulse Width Modulation), z uwzględnieniem struktur przekształtników 3 poziomowych.

Rys. 7. Algorytm sterowania przeksztaltnikiem: a) AC/DC, b) DC/AC

2.4. Model laboratoryjny przetwornicy

Do sterowania przekształtnikiem AC/DC wykorzystano sterownik z procesorem sygnałowym TMS320F28335. Sterownik zapewnia sterowanie przekształtnikiem przez interfejs światłowodowy. Dodatkowo układ wyposażony jest w przetwornik pomiarowy 16-bitowy firmy Texas Instruments oraz interfejs do komunikacji i diagnostyki przez złącze USB i konwerter sygnałów na interfejs światłowodowy.

Sterowanie przekształtnikiem DC/AC opracowano na mikroprocesorowym układzie sterowania z procesorem sygnałowym DSP 6000 i układem programowalnym FPGA EP3 firmy ALTERA. Algorytm sterowania układem zrealizowany został na procesorze sygnałowym, natomiast komunikacja, diagnostyka, obsługa interfejsów oraz modulator przekształtnika wielopoziomowego zrealizowano w układzie programowalnym.

W celu potwierdzenia wyników symulacji i przetestowania układu sterowania zbudowano modele przekształtników AC/DC i DC/AC, których konstrukcje pokazano poniżej (rys. 8 i 9). W obydwu modelach zastosowano tranzystory IGBT typu CM150DU-24NFH firmy Mitsubishio parametrach $i_C = 150$ A, $V_{CES} = 1200$ V. W obwo-dach diod poziomujących wykorzystano modułyQRD1230T30 firmy Powerex o parametrach znamionowych 300 A/1200 V.

Rys. 8. Model przekształtnika AC/DC

Rys. 9. Model przekształtnika DC/AC

2.5. Wyniki

Na rysunkach 10 i 11 przedstawiono wyniki badań przekształtnika AC/DC. Na rysunku 10a widoczny jest cykl pracy układu: wstępne ładowanie, włączenie przekształtnika, załączenie znamionowego obciążenia i wyłączenie układu. Na oscylogramie 10b pokazano powiększony moment załączenia obciążenia. Na rysunku 11a przedstawiono prąd i napięcie wejściowe oraz prąd i napięcie wyjściowe przy pracy znamionowej. Na rysunku 11b pokazano zmianę obciążenia przekształtnika.

Rys. 10. Praca przekształtnika AC/DC: a) cykl pracy układu, b) załączenie obciążenia. C1 – prąd wejściowy (24 A/dz.), C2 – napięcie wyjściowe (100 V/dz), C4 – prąd wyjściowy (10 A/dz)

Rys. 11. Praca przekształtnika AC/DC:

a) praca przekształtnika przy obciążeniu znamionowym, b) zmiana obciążenia przekształtnika. C1 – prąd wejściowy (24 A/dz.), C2 – napięcie wejściowe (135 V/dz.), C3 – napięcie wyjściowe (300 V/dz.), C4 – prąd wyjściowy

TABELA 2

Parametry badanego modelu przekształtnika AC/DC

Parametry przekształtnika AC/DC	Wartości
Napięcie wejściowe	400 V (50Hz)
Napięcie wyjściowe	$600 \text{ V DC} \pm 1\%$
Moc wyjściowa	35 kW
Częstotliwość pracy	10-20 kHz
Struktura falownika PFC	pełny mostek (ang.full bridge)
Dławik wejściowy sieciowy	3,0 mH
Zawartość harmonicznych prądu	THDI < 3%
Stabilizacja napięcia wyjściowego	1%
Maksymalne pulsacje napięcia wyjściowego	±5%

Weryfikacja wyników badań prądu wejściowego przekształtnika AC/DC odbyła się za pomocą rejestratora MetraWatt50. Na rysunku 12 pokazano współczynnik zawartości harmonicznych THD prądu wejściowego oraz rozkład harmonicznych w nim zawartych.

User Selection 2	20.12.201	3 14:19:47		User Select	ion 3		20.12.2	2013 14:20:23	
				11	24,70	A	l1h15∎	0,08	A
	04.00			I1THD	2,6	%	l1h17∎	0,04	А
11 24,82	A		l1h1∎	24,70	А	l1h19∎	0,03	A	
			l1h3∎	0,47	А	l1h21∎	0,02	A	
				l1h5∎	0,19	А	l1h23∎	0,01	A
				l1h7∎	0,09	А	l1h25∎	0,01	А
	25	0/2		l1h9∎	0,08	А	l1h27∎	0,01	A
11110 2,0	70		l1h11∎	0,13	А	l1h29∎	0,01	A	
		l1h13∎	0,27	А	l1h31∎	0,01	A		
View Profiles 1	vlemory Select	Start ESC		View	Profiles M	lemory	Select	Start	ESC

Rys. 12. Współczynnik zawartości harmonicznych prądu THD oraz ich rozkład dla obciążenia 10 kW

Uzyskane wyniki spełniają założenia stawiane takim urządzeniom, gdzie istotnymi parametrami są:

- prąd pobierany z sieci o sinusoidalnymkształcie,
- współczynnik mocy bliski 1, pobieranie mocy czynnej,
- niska zawartość harmonicznych,
- dostrajanie parametrów układu do zmiennej częstotliwości sieci dzięki zamkniętej pętli fazowej (ang. PLL).

Spełnienie powyższych wymagań możliwe było m.in. dzięki zastosowaniu algorytmu SDFT, który umożliwia pracę układu z siecią elektroenergetyczną o wysokiej zawartości wyższych harmonicznych w napięciu zasilającym. Algorytm SDFT dostosowuje się do zmiany częstotliwości sieci elektroenergetycznej, wahań amplitudy, zaników czy zapadów sieci.

Na rysunku 13 pokazano wybrane przebiegi z badań pracyprzekształtnika DC/AC o strukturze 3-poziomowej typu NPC. Przebieg 13a pokazuje prąd wyjściowy i napięcie międzyfazowe podczas startu zespołu maszynowego, natomiast na oscylogramie13b przedstawiono powiększenie przebiegów prądu i napięcia przekształtnika.

Rys. 13. Przebiegi na wyjściu przekształtnika DC/AC:

a) uruchomienie zespołu maszynowego, b) powiększenie przebiegów. C1 – napięcie międzyfazowe (100 V/dz.), C2 – prąd wyjściowy (8 A/dz.)

TABELA 3

Parametry badanego modelu przekształtnika DC/AC

Parametry przekształtnika DC/AC	Wartości
Napięcie wejściowe	600 VDC
Napięcie wyjściowe	3x400 V AC 0-50 Hz
Moc wyjściowa	do 35 kW
Częstotliwość pracy układu	1-10 kHz
Struktura falownika	NPC (ang. Neutral Point Clamped)
Dławik wejściowy filtru	3,0 mH
Zawartość harmonicznych prądu	THDI < 3%

3. PODSUMOWANIE

- Najczęściej stosowane topologie w przetwornicach statycznych to struktury dwupoziomowe, gdzie stosowane są m.in. moduły wysokonapięciowe o napięciu blokowania 6,5 kV. W nowych projektach wykorzystuje się topologie przekształtników 3-poziomowych lub kaskadowych, wktórych można stosować tranzystory o niższej klasie napięciowej, co pomimo złożoności urządzenia obniża koszt układu w porównaniu do dwupoziomowego i poprawia dostępność elementów. Dla przykładu koszt pojedynczego tranzystora z diodą zwrotną 6,5 kV na prąd 200 A wynosi ok. 750 € (czas oczekiwania 6-8 m-cy), natomiast moduł tranzystorów na napięcie blokowania 3,3 kV i prąd 200 A, gdzie w jednym module są dwa tranzystory z diodami wynosi ok. 350 € (czas oczekiwania 2-4 m-ce) [17].
- Zastosowanie nowoczesnych metod sterowania, m.in. SDFT pozwala na pracę urządzeń w trudnych warunkach eksploatacyjnych o dużym stopniu zniekształcenia sieci elektroenergetycznej.
- Opracowany algorytm wyznaczania podstawowej harmonicznej SDFT (ang. SlidingDiscrete Fourier Transform) może być wykorzystany w prawie wszystkich układach przekształtnikowych, które współpracują z sieciami elektroenergetycznymi i wymagają synchronizacji z siecią zasilającą,m.in. algorytm może znaleźć zastosowanie w sprzęgach elektroenergetycznych (np. elektrownie wiatrowe).
- Zaprojektowany model laboratoryjny zbudowany został pod kątem badań współpracy urządzeń przekształtnikowych z różnymi systemami zasilania trakcyjnego.

LITERATURA

- Steimel A.: Power-Electronics Issues of Modern Electric Railway Systems, 10 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010.
- Boora A. A., Zare F., Ghosh A., Ledwich G.: Applications of Power Electronics in Railway Systems, Proceedings Australasian Universities Power Engineering Conference, (AUPEC 2007), pp. 113-121, Perth, Western Australia, 2007.

- 3. Fuchs A.: Modern electrical propulsionsystems for rolling stock, Siemens, 2005.
- 4. Vinnikov D., Laugis J.: High Voltage Auxiliary Power Supply with the Simplified Power Circuit Topology for the DC Trains, Electrical Power Quality and Utilisation Conference, Barcelona, 2007.
- Vinnikov D., Laugis J.: An Improved High-Voltage IGBT-Based Half-BridgeConverter for Railway Applications, EVER, Monaco, 2009.
- 6. Dujić D., Kieferndorf F., Canales F.: Power Electronic Transformer Technology for Traction Applications An Overview, Electronics, vol. 16, no. 1, June, 2012.
- Ortiz G., Gammeter C., Kolar J. W., Apeldoorn O.: Mixed MOSFET-IGBT Bridge for High-Efficient Medium-Frequency Dual-Active-Bridge Converter in Solid State Transformers, Proceedings of the 14th IEEE Workshop on Control and Modeling for Power Electronics (Compel 2013), Salt Lake City, USA, June 23-26, 2013.
- 8. Allenbach J.-M.: Eisenbahntechnik, EPFL, 2013.
- 9. Matsuyama I.: Present State and Future Prospects of Power Electronic Equipment, MITSUBISHI, 2000.
- 10. Schuderer J., Drofenik U., Agostini B., Brem F., Mohn F., Canales F.: Challenges and new approaches for power module's next generation packaging technology.
- 11. Alves J. A., Cunha G., Torri P.: Medium Voltage Industrial Variable Speed Drives, WEG AUTOMACAO, Brazil, 2011.
- 12. Kemp R. J.: Drive Systems for High Speed trains, Transportation Research Board, Washington, 1998.
- Bozzo R., Fazio V., Savio S.: Power electronics reliability and stochastic performances of innovative ac traction drives: a comparative analysis, IEEE, Bologna Power Tech Conference, 2003.
- 14. Ruedi H., Kohli P.: Intelligent Power Modules DrivePublic Transport, PCIM Europe Power Electronics Magazine April, 2002.
- 15. Bakran M. M., Eckel H. G., Helsper M., Nagel A.: Next Generation of IGBT-Modules Applied to High Power Traction, SIEMENS AG, A&D LD TD.
- 16. Eckel H.G., Bakran M.M., Krafft E. U., Nagel A.: A new Family of Modular IGBT Converters for TractionApplications, EPE 2005, Dresden, Germany.
- 17. MARKEL Sp. z o. o, www.markel.

Rękopis dostarczono dnia 17.06.2014 r.

AUXILIARY POWER CONVERTER WITH 3-LEVEL NPC STRUCTURE FOR RAILWAY APPLICATIONS – SIMULATION AND EXPERIMENTAL RESULTS

M. PARCHOMIUK, G. GROCHOWSKI

ABSTRACT The paper presents AC/DC/AC converter with galvanic isolation of NPC (Neutral Point Clamped) multilevel structures. Selected simulation and experimental results of 3-level AC/DC/AC converter are presented.

Keywords: converter, static converter, traction