PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of the fib 2010 and RILEM B4 models for predicting creep in concrete

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Creep strain, a requirement of the concrete design process, is a complex phenomenon that has proven difficult to model. Although laboratory tests may be undertaken to determine the creep, these are generally expensive and not a practical option. Hence, empirical code-type prediction models are used to predict creep strain. This paper considers the accuracy of both the relatively new international fibModel Code 2010 and RILEMModel B4, when compared with the actual strains measured on a range of concretes under laboratory-controlled conditions. Both models investigated under-estimated the creep strain. In addition, the MC 2010 Model, which yielded an overall coefficient of variation (ωall) of 50.4%, was found to be more accurate than the RILEM B4 Model (with a ωall of 102.3%).
PL
Odkształcenia pełzania, których znajomość jest niezbędna w procesie projektowania, są złożone i trudne do przewidywania. Można przeprowadzić testy laboratoryjne w celu określenia pełzania, jednak są one generalnie kosztowne. W związku z tym w projektowaniu stosowane są modele empiryczne dostępne w normach. W artykule analizowano dokładność stosunkowo nowego międzynarodowego modelu pełzania przedstawionego w Model Code 2010 i RILEM B4, w porównaniu z rzeczywistymi odkształceniami pełzania mierzonymi w betonach dojrzewających w warunkach laboratoryjnych. Model MC 2010, który przyniósł całkowity współczynnik zmienności (ωall) wynoszący 50.4%, okazał się być dokładniejszy niż RILEM B4 (z ωall 102.3%).
Słowa kluczowe
EN
PL
Rocznik
Strony
95--101
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Department of Civil Engineering Technology, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
Bibliografia
  • [1] CEB-FIP (2012). CEB-FIP Model Code 2010 (2012) Final Draft. Federation Internationale Du Béton, Bulletins 65 & 66, Lausanne, 125-155.
  • [2] RILEM Model B4 (2015). Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high strength concretes with multi-decade applicability. Draft Recommendation: TC-242-MDC Multi- Decade Creep and Shrinkage of Concrete: Material Model and Structural Analysis (2015), prepared by Bazant, Z. P., Materials and Structures, 48, 753-770.
  • [3] CEB-FIP (1990). Comité Euro-International du Béton, CEB-FIP Model Code 1990. First Draft, Lausanne, Mar., 2-3, 2-28 to 2-40 (Information Bulletin No. 195).
  • [4] CEB-FIP (1999). Federation Internationale Du Béton. Structural Concrete: Textbook on behaviour, design and performance. Updated Knowledge of CEB/FIP Model Code 1990, FIB Bulletin 2(2), Lausanne, 35-52.
  • [5] RILEM Model B3 (1995). Creep and shrinkage model for analysis and design of concrete structures - Model B3. Draft RILEM Recommendation, prepared by Bazant, Z. P. and Baweja, S., Materials and Structures, 28, 357-365, 415-430, 488-495, with Errata in 29 (1996), 126.
  • [6] Wendner R., Hubler M. H. and Bazant Z. P. (2013). The B4 Model for multi-decade creep and shrinkage prediction. Proceedings of the Ninth International Conference on Creep, Shrinkage and Durability Mechanics (CONCREEP-9), 429-436.
  • [7] BS EN 1992-1-1 (2004). Eurocode 2: Design of concrete structures, Part 1-1: General - Common Rules for Buildings and Civil Engineering Structures. London: British Standards Institution (BSI).
  • [8] Fanourakis G.C. and Ballim Y. (2006, April). The influence of aggregate stiffness on the creep of concrete. Concrete Beton, 112, 5-12.
  • [9] Bazant Z. P. and Panula L. (1979). Practical prediction of time dependent deformations of concrete. Parts I-VI, Materials and Structures, 12, 169-183.
  • [10] Fanourakis G.C. (1998). The influence of aggregate stiffness on the measured and predicted creep behaviour of concrete. (MSc (Eng) dissertation, University of the Witwatersrand). Johannesburg.
  • [11] Fanourakis G. C. and Ballim Y. (2006). An assessment of the accuracy of nine design models for predicting creep in concrete. Journal of the South African Institution of Civil Engineering, 48(4), 2-8.
  • [12] Fanourakis G. C. (2011). Validation of international concrete creep prediction models by application to South African concretes. Journal of the South African Institution of Civil Engineering, 53(2), 23-30.
  • [13] Fanourakis G.C. and Ballim Y. (2003). Predicting creep deformation of concrete: a comparison of results from different investigations. Proceedings of The 11th FIG International Symposium on Deformation Measurements, Santorini, Greece, 25-28 May, 591-598.
  • [14] Wendner R., Hubler M. H. and Bazant Z. P. (2015). Statistical justification of Model B4 for multi-decade concrete creep using laboratory and bridge databases and comparisons to other models. Materials and Structures, 48, 815-833.
  • [15] Gardner N. J. and Lockman M. J. (2001). Design provisions for drying shrinkage and creep of normal strength concrete. ACI Materials Journal, 98(2), 159-167.
  • [16] American Concrete Institute (ACI) (1992). Prediction of creep, shrinkage and temperature effects in concrete structures. ACI Committee 209, Subcommittee II Report ACI 209R-92, Detroit, March, 1-12.
  • [17] BS 8110 (1985). Structural use of concrete, part 2, code of practice for design and construction. London, British Standards Institution.
  • [18] SABS 0100 (1992). Code of practice for the structural use of concrete, part 1: design. Pretoria: South African Bureau of Standards.
  • [19] AS 3600 (1988). Concrete structures - AS 3600-1988. Standards Association of Australia, North Sydney, 8-14, 32-34.
  • [20] AS 3600 (2001). Concrete structures - AS 3600-2001. Standards Association of Australia, Sydney.
  • [21] AS 3600 (2009). Concrete structures - AS 3600-2009. Standards Association of Australia, Sydney.
  • [22] Gardner N. J. (2004). Comparison of prediction provisions for drying shrinkage and creep of normal strength concretes. Canadian Journal for Civil Engineering, 31(5), 767-775.
  • [23] Gardner N. J. and Zhao J. W. (1993). Creep and shrinkage revisited. ACI Materials Journal, 90(3), 236-246.
  • [24] CEB-FIP (1970). Comité Euro-International du Béton - Federation Internationale De La Precontrainte, International recommendations for the design and construction of concrete structures. Principles and Recommendations, FIP Sixth Congress, Prague, 27-28.
  • [25] CEB-FIP (1978), Comité Euro-International du Béton - Federation Internationale De La Precontrainte, International system of unified standard codes of practice for structures. Volume II - CEB-FIP Model Code for Concrete Structures, 3rd ed. Lausanne, 56, 331-344.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3ffbb8e-77c5-4822-aa3c-a3d4ba2701a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.