PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Study of Rotary Friction Welding of Automotive Components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to select a material from which a washer can be made, so that it can be connected to an E355 steel tube by Rotary Friction Welding (RFW). It was decided to choose the steel grade X6CrMo17-1. The numerical model of the RFW process was built using the finite element method (FEM) using the ADINA System software. The numerical model takes into account the friction coefficient with variable values depending on the temperature. Numerical simulations of the process made it possible to determine the temperature fields in the weld cross-section. For the assumed process parameters: rotational speed of 14,000 rpm, friction time of 1.5 s and friction force of 600 N, the peak temperature occurred in the middle of the friction surface at the end of the friction phase and amounted to 1050 C. The results of the temperature analysis are one of the most important parameters for the implementation of subsequent calculations, such as the calculation of structural changes, hardness, residual stresses and deformations.
Twórcy
  • Department of Technology and Automation, Czestochowa University of Technology, ul. Generała Jana Henryka Dąbrowskiego 69, 42-201 Czestochowa, Poland
autor
  • Department of Civil Engineering, Czestochowa University of Technology, Department of Technology and Automation, Czestochowa University of Technology, ul. Generała Jana Henryka Dąbrowskiego 69, 42-201 Czestochowa, Poland
  • Department of Civil Engineering, Czestochowa University of Technology, Department of Technology and Automation, Czestochowa University of Technology, ul. Generała Jana Henryka Dąbrowskiego 69, 42-201 Czestochowa, Poland
  • Department of Materials Engineering, Czestochowa University of Technology, Department of Technology and Automation, Czestochowa University of Technology, ul. Generała Jana Henryka Dąbrowskiego 69, 42- 201 Czestochowa, Poland
Bibliografia
  • 1. Klimpel A. Metal and thermoplastic welding technologies. Gliwice: Wydawnictwo Politechniki Śląskiej, 1999.
  • 2. Michalski R., Kamiński Z. Friction welding. Warszawa: Wydawnictwa Naukowo-Techniczne, 1975.
  • 3. Ambroziak A. Friction welding of materials with different properties. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2011.
  • 4. Pietras A., Bogucki R. Characteristics of friction welding of metal construction elements. Szybkobieżne Pojazdy Gąsiennicowe 2005, 21(1): 1–9.
  • 5. Bhate S.S., Bhatwadekar S.G. A Literature Review of research on rotary friction welding. Int. J. Innovative Technol. Res. 2016, 4(1): 2601–2064.
  • 6. Szczucka-Lasota B., Węgrzyn T. Modern materials and innovative welding technology used in the construction of antenna mounts. Sci. J. Sil. Univ. Technol., Ser. Transp. 2022, 115: 175–82. https://doi.org/10.20858/sjsutst.2022.115.12.
  • 7. Szczucka-Lasota B., Węgrzyn T., Jurek A. Aluminum alloy welding in automotive industry. Transp. Probl. 2020, 15(3): 67–78. https://doi.org/10.21307/tp-2020-034
  • 8. Senthil Murugan S., Sathiya P., Noorul Haq A. Rotary friction welding and dissimilar metal joining of aluminium and stainless steel alloys. Awet 2021, 32: 85–92. https://doi.org/10.35219/awet.2021.11.
  • 9. Moghadasi K., Mohd Isa M.S., Ariffin M.A., Mohd Jamil M.Z., Raja S., Wu B. et al. A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. J. Mater. Res. Technol. 2022, 17: 1054–121. https://doi.org/10.1016/j.jmrt.2022.01.050.
  • 10. Balta B., Arici A.A., Yilmaz M. Optimization of process parameters for friction weld steel tube to forging joints. Mater. Design. 2016, 103: 209–22. https://doi.org/10.1016/j.matdes.2016.04.072.
  • 11. International Standard. Welding - Friction welding of metallic materials (ISO 15620-2000). Printed in Switzerland: The International Organization for Standardization (ISO), 2000.
  • 12. Humphreys B.A. A practical guide to friction welding, 2004.
  • 13. Skowrońska B., Bober M., Kołodziejczak P., Baranowski M., Kozłowski M., Chmielewski T. Solidstate rotary friction-welded tungsten and mild steel joints. Appl. Sci. 2022, 12(18): 9034. https://doi.org/10.3390/app12189034.
  • 14. Służalec A. Thermal effects in friction welding. Int J Mech Sci 1990, 32(6): 467–78. https://doi.org/10.1016/0020-7403(90)90153-A
  • 15. Schmicker D., Persson P.-O., Strackeljan J. Implicit Geometry Meshing for the simulation of Rotary Friction Welding. J. Comput. Phys. 2014, 270: 478–89. https://doi.org/10.1016/j.jcp.2014.04.014
  • 16. Tang T., Shi Q., Lei B., Zhou J., Gao Y., Li Y., Zhang G., Chen G. Transition of interfacial friction regime and its influence on thermal responses in rotary friction welding of SUS304 stainless steel: A fully coupled transient thermomechanical analysis. J. Manuf. Process. 2022, 82: 403–14. https://doi.org/10.1016/j.jmapro.2022.08.016.
  • 17. Lacki P., Adamus J., Więckowski W., Motyka M. A New method of predicting the parameters of the rotational friction welding process based on the determination of the frictional heat transfer in Ti grade 2/AA 5005 joints. Materials (Basel) 2023, 16(13). https://doi.org/10.3390/ma16134787.
  • 18. ANSYS, Granta EduPack 2022 R1 Version: 22.1.2: Getting Started with Granta EduPack. 2022.
  • 19. Lacki P. The influence of hardening layers and lubricants on the distribution of stresses and strains in forging dies: PhD thesis: Politechnika Częstochowska Wydział Budowy Maszyn, 1999.
  • 20. Jin F., Li J., Du Y., Nan X., Shi J., Xiong J., Zhang F. Numerical simulation based upon friction coefficient model on thermo-mechanical coupling in rotary friction welding corresponding with corona-bond evolution. J. Manuf. Process. 2019, 45: 595–602. https://doi.org/10.1016/j.jmapro.2019.08.001.
  • 21. Jin F., Li J., Liu P., Nan X., Li X., Xiong J., Zhang F. Friction coefficient model and joint formation in rotary friction welding. J. Manuf. Process. 2019, 46: 286–97. https://doi.org/10.1016/j.jmapro.2019.09.008
  • 22. Mattie A.A., Ezdeen S.Y., Khidhir G.I. Optimization of parameters in rotary friction welding process of dissimilar austenitic and ferritic stainless steel using finite element analysis. Advances in Mechanical Engineering 2023, 15(7). https://doi.org/10.1177/16878132231186015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3fe1e66-4d96-44e7-bc27-d12e29f2852f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.