PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid machining: abrasive waterjet technologies used in combination with conventional metal cutting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abrasive Waterjet technology is one of the fastest growing metal cutting technologies. Even so, very little published material is available on hybrid processing where abrasive waterjet cutting is one of two or more metal cutting methods. There is also limited published material on thin-walled components cut with abrasive waterjet technology. This paper makes a comparison of conventional metal cutting methods to the more unconventional abrasive waterjet technique. It will serve as a stepping stone in building knowledge aiding in hybrid machining development. It will show the possibilities and limitations during milling of thin-walled Aluminum components and then compare this to the capabilities of abrasive waterjet cutting the same components. Differences in material removal and revert control as well as in vibrations and force requirements will be reviewed. In addition, the environmental issues will be discussed and it will be determined which of the methods is more sustainable. The paper also includes a large section on process methodology.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • KTH Royal Institute of Technology, Stockholm, Sweden
autor
  • KTH Royal Institute of Technology, Stockholm, Sweden
  • KTH Royal Institute of Technology, Stockholm, Sweden
Bibliografia
  • [1] GÄRDEK H., OUAHA B., 2015, A State of the art report and comparison with conventional methods of waterjet machining technology, Bachelor of science thesis, KTH, Stockholm.
  • [2] FOWLER G., 2003, Abrasive Water-jet – Controlled depth milling of titanium alloys, PhD thesis, University of Nottingham.
  • [3] ZHANG S., Wu, Y., CHEN D., 2011, Hole-drilling using abrasive water jet in titanium. Int. J. Machining and Machinability of Materials, 9, 47-65.
  • [4] FOWLER G., PASHBY I.R., SHIPWAY P.H., 2009, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V, Wear, 266/7-8, 613-620.
  • [5] WANNER B., EYNIAN M., BENO T., PEJRYD L., 2012, Cutter exit effects during milling of thin-walled inconel 718, Advanced Materials Research, 590, 297-308.
  • [6] DAVIM J. P., 2013, Nontraditional Machining, Springer London Heidelberg New York Dordrecht, ISBN 978-1 -4471-5178-4.
  • [7] PAL V.K., TANDON P., 2011, Identification of the role of machinability and milling depth on machining time in controlled depth milling using abrasive water jet, International Journal of Advanced Manufacturing Technology, 66, 877-881.
  • [8] SHIPWAY P.H., FOWLER G. PASHBY I.R., 2005, Characteristics of the surface of a titanium alloy following milling with abrasive waterjets, Wear, 258/1-4, 123-132.
  • [9] USHASTA A., ASISH B., SIMUL B., 2013, Review on abrasive water jet machining process, International Review of Mechanical Engineering, 7/7, 1471-1494.
  • [10] ÖSTERMAN S., KUMAR S., 2010, Teknologin och dess tillämpningsområden, KTH Thesis project.
  • [11[ JANKOVIĆ P., 2013, Process parameters effects on material removal mechanism and cut quality of AWJ machining, Theoret. Appl. Mech., TEOPM7, 40/2, 277-291.
  • [12] FOLKES J., 2009, Waterjet-An innovative tool for manufacturing, Journal of Materials Processing Technology, 209, 6181-6189.
  • [13] LUO W.S., WANG C.Y., WANG J., SONG Y.X., 2011, The development of micro abrasive waterjet machining technology, Advanced Materials Research, 188, 733-738.
  • [14] HASHISH M., 1991, Characteristics of surfaces machined with abrasive-waterjets. ournal of engineering, Materials and Technology, 113, 354-362.
  • [15] WANG J., 1999, A study of abrasive waterjet cutting of metallic coated sheet steels, International Journal of Machine Tools & Manufacture, 39, 855-870.
  • [16] LIU H.-T., 2010, Waterjet technology for machining fine features pertaining to micromachining, Journal of Manufacturing Processes, 12, 8-18.
  • [17] HAGHBIN N., SPELT J.K., PAPINI M., 2014, Abrasive waterjet micro-machining of channels in metals, Journal of Materials Processing Technology, 222, 399-409.
  • [18] MILLER D., 2004, Micromachining with abrasive waterjets, Journal of Materials Processing Technology, 149/1-3, 37-42.
  • [19] HASHISH M., WHALEN J., 1993, Precision drilling of ceramic coated components with abrasive waterjets, Journal of Engineering for Gas Turbines and Power, 115/1, 148-154.
  • [20] CHITHIRAI PON SELVAN M., MOHANASUNDARARAJU N., SACHIDANANDA H., 2012, Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium, Frontiers of Mechanical Engineering, 7/4, 439-444.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3fd5453-c97c-4b3b-a37e-b89e5b190ea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.