PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Integrated preprocessing techniques with linear stochastic approaches in groundwater level forecasting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate modeling of groundwater level (GWL) is a critical and challenging issue in water resources management. The GWL fuctuations rely on many nonlinear hydrological variables and uncertain factors. Therefore, it is important to use an approach that can reduce the parameters involved in the modeling process and minimize the associated errors. This study presents a novel approach for time series structural analysis, multi-step preprocessing, and GWL modeling. In this study, we identifed the time series deterministic and stochastic terms by employing a one-, two-, and three-step preprocessing techniques (a combination of trend analysis, standardization, spectral analysis, diferencing, and normalization techniques). The application of this approach is tested on the GWL dataset of the Kermanshah plains located in the northwest region of Iran, using monthly observations of 60 piezometric stations from September 1991 to August 2017. By removing the dominant nonstationary factors of the GWL data, a linear model with one autoregressive and one seasonal moving average parameter, detrending, and consecutive non-seasonal and seasonal diferencing were created. The quantitative assessment of this model indicates the high performance in GWL forecasting with the coefcient of determination (R2 ) 0.94, scatter index (SI) 0.0004, mean absolute percentage error (MAPE) 0.0003, root mean squared relative error (RMSRE) 0.0004, and corrected Akaike’s information criterion (AICc) 151. Moreover, the uncertainty and accuracy of the proposed linear-based method are compared with two conventional nonlinear methods, including multilayer perceptron artifcial neural network (MLP-ANN) and adaptive neuro-fuzzy inference systems (ANFIS). The uncertainty of the proposed method in this study was±0.105 compared to±0.114 and±0.126 for the best results of the ANN and the ANFIS models, respectively.
Czasopismo
Rocznik
Strony
1395--1411
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
  • Department of Water Engineering, Razi University, Kermanshah, Iran
  • Department of Soils and Agro-Food Engineering, Laval University, Quebec G1V 0A6, Canada
autor
  • Department of Soils and Agro-Food Engineering, Laval University, Quebec G1V 0A6, Canada
  • Department of Irrigation and Hydraulics, Faculty of Engineering, Cairo University, Giza 12316, Egypt
  • School of Engineering, University of Guelph, Guelph, ON NIG 2W1, Canada
  • Department of Soils and Agro-Food Engineering, Laval University, Quebec G1V 0A6, Canada
Bibliografia
  • 1. Asnaashari A, Gharabaghi B, McBean E, Mahboubi AA (2015) Reservoir management under predictable climate variability and change. J Water Clim Change 6(3):472–485
  • 2. Azimi H, Bonakdari H, Ebtehaj I, Khoshbin F (2018) Evolutionary design of generalized group method of data handling-type neural network for estimating hydraulic jump roller length. Acta Mech 229:1197–1214. https://doi.org/10.1007/s00707-017-2043-9
  • 3. Bai J, Ng S (2005) Tests for skewness, kurtosis, and normality for time series data. J Bus Econ Stat 23(1):49–60
  • 4. Betts A, Gharabaghi B, McBean E, Levison J, Parker B (2015) Salt vulnerability assessment methodology for municipal supply wells. J Hydrol 531:523–533
  • 5. Bhunia GS, Shit PK, Maiti R (2016) Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J Saudi Soc Agric Sci
  • 6. Bonakdari H, Moeeni H, Ebtehaj I, Zeynoddin M, Mahoammadian A, Gharabaghi B (2018) New insights into soil temperature time series modeling: linear or nonlinear?. Theor Appl Climatol 1–21.https://doi.org/10.1007/s00704-018-2436-2
  • 7. Bonakdari H, Zaji AH, Gharabaghi B, Ebtehaj I, Moazamnia M (2020) More accurate prediction of the complex velocity field in sewers based on uncertainty analysis using extreme learning machine technique. ISH J Hydraulic Eng 26(4):409–420
  • 8. Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2015) Time Series Analysis: Forecasting and Control (5th ed.). Wiley Series in Probability and Statistics. Wiley. http://gbv.eblib.com/patron/FullRecord.aspx?p=2064681
  • 9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.), Springer-Verlag, ISBN 0–387–95364–7
  • 10. Childs C (2004) Interpolating surfaces in ArcGIS spatial analyst. ArcUser, September 3235:569
  • 11. Chuanyan Z, Zhongren N, Guodong C (2005) Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains. China Ecol Modell 189(1–2):209–220
  • 12. Clarke C, Hulley M, Marsalek J, Watt E (2011) Stationarity of AMAX series of short-duration rainfall for long-term Canadian stations: detection of jumps and trends. Can J Civ Eng 38(11):1175–1184
  • 13. Coppola E, Szidarovszky F, Poulton M, Charles E (2003) Artificial neural network approach for predicting transient water level in a multilayered groundwater system under variable state, pumping, and climate conditions. J Hydrol Eng 8(6):348–360
  • 14. Dabral PP, Murry MZ (2017) Modelling and forecasting of rainfall time series using SARIMA. Environmental Processes 4(2):399–419
  • 15. Daliakopoulos NI, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309(1–4):229–240
  • 16. Ebtehaj I, Bonakdari H, Moradi F, Gharabaghi B, Khozani ZS (2018) An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition. Coast Eng 135:1–15. https://doi.org/10.1016/j.coastaleng.2017.12.012
  • 17. Ebtehaj I, Bonakdari H, Gharabaghi B (2019) A reliable linear method for modeling lake level fluctuations. J Hydrol 570:236:250. https://doi.org/10.1016/j.jhydrol.2019.01.010
  • 18. Emamgholizadeh S, Moslemi K, Karami G (2014) Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour Manag 28(15):5433–5446
  • 19. Fallah-Mehdipour E, Bozorg Haddad O, Marino MA (2013) Prediction and simulation of monthly groundwater levels by genetic programming. J Hydro-Environ Res 7(4):1–8
  • 20. Fiedler FR (2003) Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J Hydrol Eng 8(4):219–221
  • 21. Gholami A, Bonakdari H, Samui P, Mohammadian M, Gharabaghi B (2019) Predicting stable alluvial channel profiles using emotional artificial neural networks. Appl Soft Comput 78:420–437
  • 22. Gong Y, Zhang Y, Lan S, Wang H (2015) A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour Manag https://doi.org/10.1007/s11269-015-1167-8.
  • 23. Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228(1–2):113–129
  • 24. Gorgij AD, Kisi O, Moghaddam AA (2017) Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan. Iran Hydrology Res 48(2):455–467
  • 25. Harvey R, Murphy HM, McBean EA, Gharabaghi B (2015) Using data mining to understand drinking water advisories in small water systems: a case study of Ontario First Nations drinking water supplies. Water Resour Manage 29(14):5129–5139
  • 26. He Z, Zhang Y, Guo Q, Zhao X (2014) Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions. Water Resour Manage 28(15):5297–5317
  • 27. Jafari MM, Ojaghlou H, Zare M, Schumann GJP (2021) Application of a Novel Hybrid Wavelet-ANFIS/Fuzzy C-Means Clustering Model To Predict Groundwater Fluctuations. Atmosphere 12(1):9
  • 28. Jain SK, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Current Sci 37–49
  • 29. Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150
  • 30. Ly S, Charles C, Degre A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments. Belgium Hydrol Earth Syst Sci 15(7):2259–2274
  • 31. Moeeni H, Bonakdari H, Ebtehaj I (2017a) Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. J Earth Syst Sci. https://doi.org/10.1007/s12040-017-0798-y
  • 32. Moeeni H, Bonakdari H, Ebtehaj I (2017b) Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction. Water Resource Manage 31(7):2141–2156
  • 33. Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27:1301–1321
  • 34. Moradi M, Yahya Safari S, Biglari H, Ghayebzadeh M, Darvishmotevalli M (2016) Multi-year assessment of drought changes in the Kermanshah city by standardized precipitation index. Int J Pharm Tech 8(3):17975–17987
  • 35. Moradi F, Bonakdari H, Kisi O, Ebtehaj I, Shiri J (2018) Abutment scour depth modeling using neuro-fuzzy embedded techniques. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2017.1420113
  • 36. Motiee H, Mcbean E, Semsar A, Gharabaghi B, Ghomashchi V (2006) Assessment of the contributions of traditional qanats in sustainable water resources management. Int J Water Resour Dev 22(4):575–588
  • 37. Mukherjee A, Ramachandran P (2018) Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: analysis of comparative performances of SVR, ANN and LRM. J Hydrol 558:647–658
  • 38. Murat M, Malinowska I, Gos M, Krzyszczak J (2018) Forecasting daily meteorological time series using ARIMA and regression models. International agrophysics, 32(2)
  • 39. Nalley D, Adamowski J, Biswas A, Gharabaghi B, Hu W (2019) A multiscale and multivariate analysis of precipitation and streamflow variability in relation to ENSO, NAO and PDO. J Hydrol 574:288–307
  • 40. Nourani V, Mousavi S (2016) Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. J Hydrol 536:10–25
  • 41. Perera N, Gharabaghi B, Howard K (2013) Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years. J Hydrol 479:159–168
  • 42. Salek M, Levison J, Parker B, Gharabaghi B (2018) CAD-DRASTIC: chloride application density combined with DRASTIC for assessing groundwater vulnerability to road salt application. Hydrogeol J 26(7):2379–2393
  • 43. Salimi AH, Noori A, Bonakdari H, Masoompour Samakosh J, Sharifi E, Hassanvand M, Agharazi M (2020) Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP and fuzzy VIKOR method. Sustainability 12(3):1232
  • 44. Seifi A, Ehteram M, Singh VP, Mosavi A (2020) Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability 12(10):4023
  • 45. Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manage 27(2):419–432
  • 46. Soltani JK, Dadashi F (2013) M. Effect of drought on groundwater levels drop in Kermanshah Province. Int J Sci Eng Res 4(11), 458–463
  • 47. Stajkowski S, Kumar D, Samui P, Bonakdari H, Gharabaghi B (2020a) Genetic-algorithm-optimized sequential model for water temperature prediction. Sustainability 12(13):5374
  • 48. Stajkowski S, Zeynoddin M, Farghaly H, Gharabaghi B, Bonakdari H (2020b) A Methodology for forecasting dissolved oxygen in urban streams. Water 12(9):2568
  • 49. Taheri K, Taheri M, Parise M (2016) Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: a case study in Kermanshah Province, western Iran. Environ Earth Sci 75(17):1221
  • 50. Tatalovich Z (2005) A comparison of Thiessen-polygon, Kriging, and spline models of UV exposure. Proceedings of the University Consortium of Geographical Information Science Summer Assembly
  • 51. Vetrivel N, Elangovan K (2017) Application of ANN and ANFIS model on monthly groundwater level fluctuation in lower Bhavani River Basin
  • 52. Zare M, Koch M (2018) Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: application to the Miandarband plain. J Hydro-Environ Res 18:63–76
  • 53. Zeynoddin M, Bonakdari H (2019) Investigating methods in data preparation for stochastic rainfall modeling: A case study for Kermanshah synoptic station rainfall data. Iran J Appl Res Water Wastewater 6(1):32–38
  • 54. Zeynoddin M, Bonakdari H, Azari A, Ebtehaj I, Gharabaghi B, Madavar HR (2018) Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate. J Environ Manage 222:190–206
  • 55. Zeynoddin M, Bonakdari H, Ebtehaj I, Esmaeilbeiki F, Gharabaghi B, Haghi DZ (2019) A reliable linear stochastic daily soil temperature forecast model. Soil Tillage Res 189:73–87. https://doi.org/10.1016/j.still.2018.12.023
  • 56. Zeynoddin M, Bonakdari H, Ebtehaj I, Azari A, Gharabaghi B (2020) A generalized linear stochastic model for lake level prediction. Science of The Total Environment, 138015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3fcee77-45f2-4693-9796-269e89693792
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.