PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Assessment of the Suitability of Lemon Balm and Alder Buckthorn Wastes for the Biogas Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was to determine the suitability of wastes from herbal industry for the biogas production. The wastes of lemon balm (Melissa officinalis L.) and alder buckthorn (Frangula alnus Mill.) were used for the biomethane potential test (BMP). The following properties were determined in the tested material: total solids content (TS), volatile solids content (VS), total Kjeldahl nitrogen content (TKN), total organic carbon content (TOC), total phosphorus content (P) and total potassium content (K). The biogas yield was monitored on the basis of the liquid displacement method. The examined wastes differed in terms of the basic properties affecting the biogas production. Alder buckthorn contained more VS, TKN and TOC, while lemon balm had a narrower C/N ratio and higher P and K content. The tested wastes were also different in terms of the biogas production kinetics. In the case of lemon balm, the highest production was observed at the beginning of the experiment, while the anaerobic digestion of alder buckthorn waste was only noticeable in the third week of the experiment. This delay caused higher cumulative methane yield of lemon balm waste by about 60% than that of alder buckthorn. Despite those differences, the wastes from both plants were suitable for biogas production, mainly as co-substrates. Co-digestion resolves the problem of utilizing such wastes and decreases the demand for energy crops such as maize which should be used as fodder and food in the first place. In addition, clear differences in the kinetics of anaerobic digestion may cause that a simultaneous use of both tested wastes will ensure continuous biogas production at a relatively high level.
Rocznik
Strony
152--158
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Agri-Food Engineering and Environmental Management, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Álvarez J.A., Otero L., Lema J.M. 2010. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol., 101, 1153–1158.
  • 2. Angelidaki I., Ellegard L. 2003. Codigestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotechnol., 109, 95–105.
  • 3. Bogdanovic A., Tadic V., Arsic I., Milovanovic S., Petrovic S., Skala D. 2016. Supercritical and high preassure subcritical fluid extraction from Lemon balm (Melissa officinalis L., Lamiaceae). J. of Supercritical Fluids, 107, 234–242.
  • 4. Buchwald W. 2015. Kierunki rozwoju produkcji zielarskiej. Online at: http://kongres.cdr.gov.pl/images/P3_4_Buchwald.pdf, accessed 02.06.2019.
  • 5. Czubaszek R., Wysocka-Czubaszek A. 2018. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant. International Agrophysics, 32, 29–37.
  • 6. Darynatury.pl. Online at: https://darynatury.pl/Podstrony/Zagospodarowanie-odpadow, 12. accessed 02.06.2019.
  • 7. Desideri D., Meli M. A., Roselli C. 2010. Determination of essential and non-essential elements in some medicinal plants by polarised X ray fluorescence spectrometer (EDPXRF). Microchemical Journal, 95, 174–180.
  • 8. Fricke K. 2007. Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management, 27, 30–43.
  • 9. García-González R., López S., Fernández, M., Bodas R., González J.S. 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Animal Feed Science and Technology, 147, 36–52.
  • 10. Hanczakowska E. 2007. Herbs and herbal preparations in pig feeding [In Polish]. Wiadomości Zootechniczne, R. XLV, 3, 19–23.
  • 11. Herrmann C., Idler C., Heiermann M. 2016. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresource Technology, 206, 23–35.
  • 12. Holliger C. et al. 2016. Towards a standardization of biomethane potential tests. Water Sci. Technol., 74(11), 2515–2522.
  • 13. Langeveld J.W.A., Peterson E.C. 2018 Feedstock for biogas production: biogas and electricity generation potentials. [In:] Tabatabaei M., Ghanavati H. (eds.) Biogas. Fundamentals, process and operation. Biofuel and Biorafinery Technologies, 6, 35–50.
  • 14. Lewicki A., Pilarski K., Janczak D., Czekała W., Rodríguez Carmona P. C., Cieślik M., Witaszek K. 2013. The biogas production from herbs and waste from herbal industry. Journal of Research and Applications in Agricultural Engineering, 58 (1), 114–117.
  • 15. Maćkowiak C., Żebrowski J. 2000. Chemical composition of farmyard manure in Poland [In Polish]. Nawozy i Nawożenie, 4(5), 119–130.
  • 16. Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., KliberA., Karłowski J., Dolska M. 2011. Construction and operation of agricultural biogas plants [In Polish]. Wydawnictwo ITP, Warszawa-Poznań.
  • 17. Newerli-Guz J. 2016. Growing herbal plants in Poland [In Polish]. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, tom XVIII 18, z. 3, 268–274.
  • 18. Obidziński S. 2010. Evaluation of energy properties of lemon balm waste [In Polish]. Zeszyty Problemowe Postępów Nauk Rolniczych, z. 546, 253–262.
  • 19. Obidziński S. 2013. Characteristics of water activity and geometric parameters of lemon balm waste in the aspect of their use as a feed additive [In Polish]. Acta Agrophysica, 20(1), 113–124.
  • 20. Panyadee S., Petiraksakul A., Phalakornkule C. 2013. Biogas production from co-digestion of Phyllanthus emblica residues and food waste. Energy for Sustainable Development, 17, 515–520.
  • 21. Scarlat N., Dellemend J.-F., Fahl F. 2018. Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472.
  • 22. Statistics Poland 2018, Crop production in 2017, GUS, Warszawa.
  • 23. Teleszewski T. J., Żukowski M. 2018. Analysis of heat loss of a biogas anaerobic digester in weather conditions in Poland. Journal of Ecological Engineering, 19 (4), 242–250.
  • 24. Wallace R.J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. of Nutr. Soc., 63, 621–629.
  • 25. Veluchamy C., Gilroyed B.H., Kalamdahad A.S. 2019. Process performance and biogas production optimizing of mesophilic plug flow anaerobic digestion of corn silage. Fuel, 253, 1097–1103.
  • 26. Wysocka-Czubaszek A. 2019. Dynamics of nitrogen transformations in the soil fertilized with digestate from agricultural biogas plant. Journal of Ecological Engineering, 20 (1), 108–117.
  • 27. Wysocka-Czubaszek A., Czubaszek R., Roj-Rojewski S., Banaszuk P. 2018. Comparative study on effects of digestate and cattle slurry application on N dynamics in fertilized soil. Proc. Conf. Engineering for Rural Development, 1804–1809.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3fb95d8-101b-4c7d-97dc-62c34ff7bf8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.