PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the instantaneous frequency of Gaussian stochastic processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the instantaneous frequency (IF) of continuoustime, complex-valued, zero-mean, proper, mean-square differentiable, nonstationary Gaussian stochastic processes. We compute the probability density function for the IF for fixed time, which generalizes a result known for wide-sense stationary processes to nonstationary processes. For a fixed point in time, the IF has either zero or infinite variance. For harmonizable processes, we obtain as a consequence the result that the mean of the IF, for fixed time, is the normalized first-order frequency moment of the Wigner spectrum.
Rocznik
Strony
69--92
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino (TO), Italy
  • Signal and System Theory Group, Dept. of Electrical Engineering and Information Technology (EIM-E), Universität Paderborn, 33098 Paderborn, Germany
Bibliografia
  • [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
  • [2] P. Boggiatto, A. Oliaro and P. Wahlberg, The wave front set of the Wigner distribution and instantaneous frequency, J. Fourier Anal. Appl. 18 (2) (2012), pp. 410-438.
  • [3] H. Broman, The instantaneous frequency of a Gaussian signal: the one-dimensional density function, IEEE Trans. Acoust. Speech Signal Process. ASSP-29 (1) (1981), pp. 108-111.
  • [4] T. A. C. M. Claasen and W. F. G. Mecklenbräuker, The Wigner distribution - a tool for time-frequency signal analysis I-III, Philips J. Res. 35 (3-5) (1980), pp. 217-250, 276-300, 372-389.
  • [5] L. Cohen, Time-Frequency Analysis, Prentice Hall, New York 1995.
  • [6] H. Cramér and M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York 1967.
  • [7] J. L. Doob, Stochastic Processes, Wiley Classics Library, New York 1990.
  • [8] P. Flandrin, Time-Frequency/Time-Scale Analysis, Academic Press, San Diego 1999.
  • [9] W. Fleming, Functions of Several Variables, Undergrad. Texts Math., Springer, New York 1977.
  • [10] G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton 1989.
  • [11] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston 2001.
  • [12] S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, Cambridge 1997.
  • [13] Y. Kakihara, Multidimensional Second Order Stochastic Processes, World Scientific, Singapore 1997.
  • [14] J. Lilly and S. C. Olhede, Bivariate instantaneous frequency and bandwidth, IEEE Trans. Signal Process. 58 (2010), pp. 591-603.
  • [15] M. Loève, Probability Theory, Van Nostrand, Princeton 1960.
  • [16] W. Martin, Time-frequency analysis of random signals, Proc. ICASSP-82 7 (1982), pp. 1325-1328.
  • [17] K. S. Miller, Complex Stochastic Processes - An Introduction to Theory and Application, Addison-Wesley, Reading, MA, 1974.
  • [18] F. D. Neeser and J. L. Massey, Proper complex random processes with applications to information theory, IEEE Trans. Inform. Theory 39 (4) (1993), pp. 1293-1302.
  • [19] A. Papoulis, Signal Analysis, McGraw-Hill, Auckland 1984.
  • [20] M. M. Rao, Harmonizable processes: structure theory, Enseign. Math. 28 (1982), pp. 295-351.
  • [21] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1987.
  • [22] R. A. Silverman, Locally stationary random processes, IRE Trans. Inform. Theory 3 (1957), pp. 182-187.
  • [23] P. Wahlberg, The random Wigner distribution of Gaussian stochastic processes with covariance in S0(R2d), J. Funct. Spaces Appl. 3 (2) (2005), pp. 163-181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3fb8449-b7bc-4265-a5ca-2e663b2fcc84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.