PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HAIS-IDS: A hybrid artificial immune system model for intrusion detection in IoT

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of the Internet of Things (IoT) is increasing exponentially, the dynamic data flow and distributive operation over low-resource devices pose a huge threat to sensitive human data. This paper introduces an artificial immune system (AIS) based approach to intrusion detection in IoT network ecosystems. The proposed approach implements dual-layered AIS; which is robust to zero-day attacks and designed to adapt new types of attack classes in the form of antibodies. In this paper, a hybrid method has been presented which uses hybrid of clonal selection using variational auto-encoders as innate immune layer and apaptive dentritic model for identifying intrusions over IoT specific datasets. Moreover we present extensive empirical analysis over six IoT network benchmark datasets for semi-supervised multi-class classification task and obtain superior performance compared to five state-of-the-art baselines. Finally, VC-ADIS achieves 99.83% accuracy over MQTT-set dataset.
Rocznik
Strony
art. no. e152211
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Manipal University Jaipur, Jaipur, India
  • Manipal University Jaipur, Jaipur, India
  • Manipal University Jaipur, Jaipur, India
Bibliografia
  • [1] B. Thakur, “A survey on internet of things (IoT) security: Challenges and current status,” VIVA-Tech Int. J. Res. Innovation, vol. 1, pp. 1–6, 2021. [Online]. Available: https://www.viva-technology.org/New/IJRI/2021/217.pdf
  • [2] O. Lifandali and N. Abghour, “Deep learning methods applied to intrusion detection: Survey, taxonomy and challenges,” in 2021 International Conference on Decision Aid Sciences and Application (DASA), 2021, pp. 1035–1044, doi: 10.1109/DASA53625.2021.9682357.
  • [3] X. Liang and Y. Kim, “A survey on security attacks and solutions in the iot network,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 2021, pp. 0853–0859, doi: 10.1109/CCWC51732.2021.9376174.
  • [4] T. Kumar, A. Sharma, S. Dutta, J. Sachin, G. Dutta, and R.P. Sharma, “A concise review of immune system and natural immune modulators,” Int. J. Pharm. Sci. Rev. Res., vol. 68, no. 2, pp. 79–84, 2021. [Online]. Available: https://globalresearchonline.net/journalcontents/v68-2/12.pdf
  • [5] D.P. Kingma and M. Welling, “An introduction to variational autoencoders,” ArXiv arXiv:1906.02691, 2019, doi: 10.48550/arXiv.1906.02691.
  • [6] J.M. Vidal, A.L.S. Orozco, and L.J.G. Villalba, “Adaptive artificial immune networks for mitigating dos flooding attacks,” Swarm Evol. Comput., vol. 38, pp. 94–108, 2018, doi: 10.1016/j.swevo.2017.07.002.
  • [7] C. Ramdane and S. Chikhi, “Negative selection algorithm: Recent improvements and its application in intrusion detection system,” IJCAR, vol. 6, no. 2, 2017, pp. 20–30. [Online]. Available: https://meacse.org/ijcar/archives/115.pdf
  • [8] R.K. Das, S. Dash, R.K. Mishra, and A. Panigrahy, “E-CLONALG: A classifier based on clonal selection algorithm,” Trans. Mach. Learn. Artif. Intel., vol. 4, no. 4, p. 88, 2018, doi: 10.14738/tmlai.46.2562.
  • [9] V. Soni, N.S. Yadav, D.P. Bhatt, and S. Saxena, “Dais: deep artificial immune system for intrusion detection in iot ecosystems,” Int. J. Bio-Inspired Comput., vol. 23, pp. 148–156, 2024, doi: 10.1504/IJBIC.2024.137904.
  • [10] É. Vivier, D.H. Raulet, A. Moretta, M.A. Caligiuri, L. Zitvogel, L.L. Lanier, W.M. Yokoyama, and S. Ugolini, “Innate or adaptive immunity? the example of natural killer cells,” Science, vol. 331, pp. 44–49, 2011.
  • [11] D.P. Kingma and M. Welling, “An introduction to variational autoencoders,” ArXiv arXiv:1906.02691, 2019, doi: 10.48550/arXiv.1906.02691.
  • [12] R. Pinto, G. Gonçalves, J. Delsing, and E. Tovar, “Incremental dendritic cell algorithm for intrusion detection in cyber-physical production systems,” in Intelligent Computing, K. Arai, Ed., Cham: Springer International Publishing, 2021, pp. 664–680.
  • [13] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
  • [14] J.R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106, 1986.
  • [15] H. Zhang, L. Jiang, and L. Yu, “Attribute and instance weighted naive bayes,” Pattern Recognit., vol. 111, p. 107674, 2021.
  • [16] K. Wawryn and P. Widuliński, “Detection of anomalies in compiled computer program files inspired by immune mechanisms using a template method,” J. Comput. Virol. Hacking Tech., vol. 17, pp. 47–59, 2021.
  • [17] J. Sinha and M. Manollas, “Efficient deep cnn-bilstm model for network intrusion detection,” in Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition, 2020, pp. 223–231.
  • [18] Y. Lu and J. Lu, “A universal approximation theorem of deep neural networks for expressing probability distributions,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, ser. NIPS’20, vol. 33, 2020, pp. 3094–3105.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3ed4e89-f628-4485-ad0c-55f31026009f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.