PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of bioactive metal fillers on microstructural homogeneity of PA12 composites produced by polymer Laser Sintering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, polyamide 12 (PA12) blends with three types of metallic fillers are tested, which differ in the type of material and its’ morphology. Low content mixtures are taken into consideration (0.5, 1.0, 2.0, 5.0 wt%), since a low impact on mechanical properties along with obtaining antibacterial properties are desired. The investigation focuses on filler distribution as well as the influence on microstructural homogeneity of the base material after processing with polymer Laser Sintering. Moreover, the influence of the filler content on the mechanical properties and fracture behaviour were examined. Processability PA12 with bioactive metal fillers was confirmed, and no significant changes in ductile behaviour of PA12 were observed. An in-depth analysis of the effect of the filler on microstructural homogeneity was conducted.
Rocznik
Strony
art. no. e117
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • 1. Diegel O, Nordin A, Motte D. Additive manufacturing technologies, 2019. https://doi.org/10.1007/978-981-13-8281-9_2.
  • 2. Zuniga JM, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Dev. 2020;17:477-81. https://doi.org/10.1080/17434 440.2020.1756771.
  • 3. Yuan S, Shen F, Chua CK, Zhou K. Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog Polym Sci. 2019;91:141-68. https://doi.org/10.1016/j.progpolymsci.2018.11.001.
  • 4. Turner RD, Wingham JR, Paterson TE, Shepherd J, Majewski C. Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts. Sci Rep. 2020;10:1-11. https://doi.org/10.1038/s41598-020-57686-4.
  • 5. Lanzl L, Wudy K, Greiner S, Drummer D. Selective laser sintering of copper filled polyamide 12: characterization of powder properties and process behavior. Polym Compos. 2019;40:1801-9. https://doi.org/10.1002/pc.24940.
  • 6. Yuan Y, Hu H, Wu W, Zhao Z, Du X, Wang Z. Hybrid of multidimensional fillers for thermally enhanced polyamide 12 composites fabricated by selective laser sintering. Polym Compos. 2021;42:4105-14. https://doi.org/10.1002/pc.26120.
  • 7. Zhang Y, Cui Y, Wang S, Zhao X, Wang F, Wu G. Effect of microwave treatment on bending properties of carbon nanotube/wood plastic composites by selective laser sintering. Mater Lett. 2020;267:127547. https://doi.org/10.1016/j.matlet.2020.127547.
  • 8. Zeng W, Guo Y, Jiang K, Yu Z, Liu Y, Shen Y, Deng J, Wang P. Laser intensity effect on mechanical properties of wood-plastic composite parts fabricated by selective laser sintering. J Thermoplast Compos Mater. 2013;26:125-36. https://doi.org/10.1177/0892705712461520.
  • 9. Salmoria GV, Klauss P, Zepon K, Kanis LA, Roesler CRM, Vieira LF. Development of functionally-graded reservoir of PCL/PG by selective laser sintering for drug delivery devices: this paper presents a selective laser sintering-fabricated drug delivery system that contains graded progesterone content. Virtual Phys Prototyp. 2012;7:107-15. https://doi.org/10.1080/17452759.2012.687911.
  • 10. Thakkar R, Jara MO, Swinnea S, Pillai AR, Maniruzzaman M. Impact of laser speed and drug particle size on selective laser sintering 3d printing of amorphous solid dispersions. Pharmaceutics. 2021;13:1-19. https://doi.org/10.3390/pharmaceutics13081149.
  • 11. Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C. 2016;60:195-203. https://doi.org/10.1016/j.msec.2015.11.023.
  • 12. Palza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci. 2015;16:2099-116. https://doi.org/10.3390/ijms16012099.
  • 13. Borkow G, Gabbay J. Copper as a biocidal tool. Curr Med Chem. 2005;12:2163–75. https://doi.org/10.2174/0929867054637617.
  • 14. June SG, Dziewulski DM. Copper and silver biocidal mechanisms, resistance strategies, and efficacy for legionella control. J Awwa. 2018;110:E13-35. https://doi.org/10.1002/awwa.1144.
  • 15. Balzereit S, Proes F, Altstadt V, Emmelmann C. Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers. Addit Manuf. 2018;23:347-54. https://doi.org/10.1016/j.addma.2018.08.016.
  • 16. Wolf K, Vilardell AM, Du Plessis A, Yadroitsava I, Yadroitsev I. Tensile properties of polyamide/12 black with 10wt.% copper samples manufactured by laser powder bed fusion. Trans Addit Manuf Meets Med. 2021. https://doi.org/10.18416/AMMM.20.
  • 17. Olejarczyk M, Gruber P, Ziolkowski G. Capabilities and limitations of using Desktop 3-D printers in the laser sintering process. Appl Sci. 2020. https://doi.org/10.3390/APP10186184.
  • 18. Dewulf W, Pavan M, Craeghs T, Kruth JP. Using X-ray computed tomography to improve the porosity level of polyamide-12 laser sintered parts. CIRP Ann Manuf Technol. 2016;65:205-8. https://doi.org/10.1016/j.cirp.2016.04.056.
  • 19. Hofland E, Baran I, Wismeijer D. Correlation of process parameters with mechanical properties of laser sintered PA12 parts. Adv Mater Sci Eng. 2017;2017:1-11. https://doi.org/10.1155/2017/4953173.
  • 20. Craft G, Nussbaum J, Crane N, Harmon JP. Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes. Addit Manuf. 2018;22:800-6. https://doi.org/10.1016/j.addma.2018.06.028.
  • 21. Lu Y, Men Y. Cavitation-induced stress whitening in semi-crystalline polymers. Macromol Mater Eng. 2018. https://doi.org/10.1002/mame.201800203.
  • 22. Ziołkowski G, Grochowska E, Kęszycki D, Gruber P, Hoppe V, Szymczyk-Ziołkowska P, Kurzynowski T. Investigation of porosity behavior in SLS polyamide-12 samples using ex-situ X-ray computed tomography. Mater Sci. 2021;39:436-45. https://doi.org/10.2478/msp-2021-0035.
  • 23. Stichel T, Frick T, Laumer T, Tenner F, Hausotte T, Merklein M, Schmidt M. A Round Robin study for selective laser sintering of polymers: back tracing of the pore morphology to the process parameters. J Mater Process Technol. 2018;252:537–45. https://doi.org/10.1016/j.jmatprotec.2017.10.013.
  • 24. Gruber K, Smolina I, Kasprowicz M, Kurzynowski T. Evaluation of inconel 718 metallic powder to optimize the reuse of powder and to improve the performance and sustainability of the laser powder bed fusion (Lpbf) process. Materials (Basel). 2021. https://doi.org/10.3390/ma14061538.
  • 25. Haferkamp L, Haudenschild L, Spierings A, Wegener K, Riener K, Ziegelmeier S, Leichtfried GJ. The influence of particle shape, powder flowability, bed fusion. Metals (Basel). 2021;11:1-14.
  • 26. Wang Y, Rouholamin D, Davies R, Ghita OR. Powder characteristics, microstructure and properties of graphite platelet reinforced Poly Ether Ether Ketone composites in High Temperature Laser Sintering (HT-LS). Mater Des. 2015;88:1310-20. https://doi.org/10.1016/j.matdes.2015.09.094.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3e9fe58-9acb-48d3-a16f-7996e2bda8ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.