PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free vibration behaviour of thin-walled concrete box-girder bridge using Perspex sheet experimental model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Curved box-girder bridges offers an excellent solution to the problems associated with traffic congestion. However, owing to their complex geometry, they are subjected to shear lag, torsional warping and cross-sectional distortion, which must be assessed in their study and design. Furthermore, the dynamic behaviour of curved bridges adds to the complexity of the issue, emphasizing the importance of studying free vibration. The purpose of this study is to numerically model the concrete curved box-girder bridge considering torsional warping, distortion and distortional warping effects and to identify key parameters that influence the free vibration response of the box-girder bridge by validating it with experimental and analytical studies. Design/methodology/approach: The concrete bridge is numerically modelled by means of computationally effective thin-walled box-beam finite elements that consider torsional warping, distortion and distortional warping, which are prominent features of thinwalled box-girders. The free vibration analysis of the concrete curved box-girder bridge is performed by developing a finite element based MATLAB program. Findings: The identification of critical parameters that influence the free vibration behaviour of curved thin-walled concrete box-girder bridges is one of the main findings of the study. Each parameter and its effect has been extensively discussed. Research limitations/implications: The study limits for the preliminary design phase of thin-walled box-girder bridge decks, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique on multi-span curved bridges having unequal span. Originality/value: The current research implements a finite element formulation in combination with thin-walled beam theory, where an extensive parametric study is conducted on the free vibration behaviour of a concrete thin-walled box-girder bridge, while also accounting for their complex structural actions. The validity of the given numerical formulation is demonstrated by a comparison of the natural frequencies found experimentally. The study carried out will be of great importance for engineers to help them anticipate the modal characteristics of a curved concrete thin-walled girder bridge, which will further be useful for evaluating their dynamic response analysis.
Rocznik
Strony
56--76
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology, Hamirpur-177005, India
  • Department of Civil Engineering, National Institute of Technology, Hamirpur-177005, India
Bibliografia
  • [1] C.P. Heins Jr., J.C. Oleinik, Curved box beam bridge analysis, Computers & Structures 6/2 (1976) 65-73. DOI: https://doi.org/10.1016/0045-7949(76)90054-7
  • [2] B. Kermani, P. Waldron, Analysis of continuous box girder bridges including the effects of distortion, Computers & Structures 47/3 (1993) 427-440. DOI: https://doi.org/10.1016/0045-7949(93)90238-9
  • [3] M. Mukhopadhyay, A.H. Sheikh, Large amplitude vibration of horizontally curved beams: a finite element approach, Journal of Sound and Vibration 180/2 (1995) 239-251. DOI: https://doi.org/10.1006/jsvi.1995.0077
  • [4] D.J. Ewins, Modal Testing: Theory, Practice, and Application, Research Studies Press, Hertfordshire, England, 2000.
  • [5] M.I. Friswell, J.E. Mottershead, Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, Dordrecht, Boston and London, 1995.
  • [6] W.X. Ren, G. De Roeck, Structural damage identification using modal data. I: Simulation verification, Journal of Structural Engineering 128/1 (2002) 87-95. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87)
  • [7] W.X. Ren, G.E. Blandford, I.E. Harik, Roebling suspension bridge. I: Finite-element model and free vibration response, Journal of Bridge Engineering 9/2 (2004) 110-118. DOI: https://doi.org/10.1061/(ASCE)1084-0702(2004)9:2(110)
  • [8] K. Nallasivam, Response of horizontally curved thin-walled box-girder bridge to vehicular loads, PhD Thesis, Indian Institute of Technology Guwahati, India, 2006. Available from: http://gyan.iitg.ernet.in/handle/123456789/106
  • [9] V.Z. Vlasov, Beams TW Chapter V, National Science Foundation, Washington, DC, 1961.
  • [10] B.I. Maisel, Analysis of concrete box beams using small computer capacity, Canadian Journal of Civil Engineering 12/2 (1985) 265-278. DOI: https://doi.org/10.1139/l85-028
  • [11] L.F. Boswell, Q. Li, Consideration of the relationships between torsion, distortion and warping of thin-walled beams, Thin-walled Structures 21/2 (1995) 147-161. DOI: https://doi.org/10.1016/0263-8231(94)00030-4
  • [12] J. Jönsson, Distortional warping functions and shear distributions in thin-walled beams, Thin-Walled Structures 33/4 (1999) 245-268. DOI: https://doi.org/10.1016/S0263-8231(98)00048-2
  • [13] H. Zhang, R. DesRoches, Z. Yang, S. Liu, Experimental and analytical studies on a streamlined steel box girder, Journal of Constructional Steel Research 66/7 (2010) 906-914. DOI: https://doi.org/10.1016/j.jcsr.2010.02.001
  • [14] M.R. Awall, T. Hayashikawa, T. Matsumoto, X. He, Effects of bottom bracings on torsional dynamic characteristics of horizontally curved twin I-girder bridges with different curvatures, Earthquake Engineering and Engineering Vibration 11/2 (2012) 149-162. DOI: https://doi.org/10.1007/s11803-012-0106-4
  • [15] G.C. Ezeokpube, S.B. Singh, N.N. Osadebe, Numerical and Experimental Modeling of the Static Response of Simply Supported Thin-Walled Box Girder Bridges, Nigerian Journal of Technology 34/4 (2015) 685-698. DOI: https://doi.org/10.4314/njt.v34i4.4
  • [16] K. Kashefi, A.H. Sheikh, M.C. Griffith, M.M. Ali, K. Tateishi, Static and vibration characteristics of thin-walled box beams: an experimental investigation, Advances in Structural Engineering 20/10 (2017) 1540-1559. DOI: https://doi.org/10.1177/1369433216687565
  • [17] I.N. Tsiptsis, E.J. Sapountzakis, Isogeometric analysis for the dynamic problem of curved structures including warping effects, Mechanics Based Design of Structures and Machines 46/1 (2018) 66-84. DOI: https://doi.org/10.1080/15397734.2016.1275974
  • [18] I.N. Tsiptsis, E.J. Sapountzakis, Generalized warping and distortional analysis of curved beams with isogeometric methods, Computers & Structures 191 (2017) 33-50. DOI: https://doi.org/10.1016/j.compstruc.2017.06.007
  • [19] E.J. Sapountzakis, I.N. Tsiptsis, B-splines in the Analog Equation Method for the generalized beam analysis including warping effects, Computers & Structures 180 (2017) 60-73. DOI: https://doi.org/10.1016/j.compstruc.2016.03.007
  • [20] I.N. Tsiptsis, E.J. Sapountzakis, Higher order beam theories and isogeometric methods in the analysis of curved bridges-assessment of diaphragms’ guidelines, International Journal of Bridge Engineering 5/3 (2017) 133-182. Available from: https://www.ijbe.net/issues/volumes/itemlist/category/42-issue-3-sep-dec-2017
  • [21] M.S. Cheung, Y.K. Cheung, Analysis of curved box girder bridges by finite strip method, Publications IABSE 31/I (1971) 1-19. Available from: http://hdl.handle.net/1783.1/40444
  • [22] M.A. Abdullah, A.A. Abdul-Razzak, Finite strip analysis of prestressed box-girders, Computers & Structures 36/5 (1990) 817-822. DOI: https://doi.org/10.1016/0045-7949(90)90152-R
  • [23] A. Fam, C. Turkstra, A finite element scheme for box bridge analysis, Computers & Structures 5/2 (1975) 179-186. DOI: https://doi.org/10.1016/0045-7949(75)90008-5
  • [24] G.A. Gunnlaugsson, P.T. Pedersen, A finite element formulation for beams with thin walled cross-sections, Computers & Structures 15/6 (1982) 691-699. DOI: https://doi.org/10.1016/S0045-7949(82)80011-4
  • [25] L.F. Boswell, S.H. Zhang, The effect of distortion in thin-walled box-spine beams, International Journal of Solids and Structures 20/9-10 (1984) 845-862. DOI: https://doi.org/10.1016/0020-7683(84)90054-4
  • [26] Y.T. Hsu, C.C. Fu, D.R. Schelling, An improved horizontally-curved beam element, Computers & Structures 34/2 (1990) 313-318. DOI: https://doi.org/10.1016/0045-7949(90)90375-C
  • [27] A.G. Razaqpur, H.G. Li, Refined analysis of curved thin-walled multicell box girders, Computers & Structures 53/1 (1994) 131-142. DOI: https://doi.org/10.1016/0045-7949(94)90136-8
  • [28] W. Yaping, L. Yuanming, Z. Yuanin, P. Weidong, A curved box beam element considering shear lag effect and its static and dynamic applications, Journal of Sound and Vibration 253/5 (2002) 1131-1139. Available from: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13760506
  • [29] Z. Begum, Analysis and behaviour investigations of box girder bridges, PhD Thesis, University of Maryland, College Park, USA, 2010. Available from: http://hdl.handle.net/1903/10500
  • [30] I.N. Tsiptsis, O.E. Sapountzaki, Analysis of composite bridges with intermediate diaphragms & assessment of design guidelines, Computers & Structures 234 (2020) 106252. DOI: https://doi.org/10.1016/j.compstruc.2020.106252
  • [31] Z. Zhu, L. Zhang, D. Zheng, G. Cao, Free vibration of horizontally curved thin-walled beams with rectangular hollow sections considering two compatible displacement fields, Mechanics Based Design of Structures and Machines 44/4 (2016) 354-371. DOI: https://doi.org/10.1080/15397734.2015.1075410
  • [32] T. Gupta, M. Kumar, Flexural response of skew-curved concrete box-girder bridges, Engineering Structures 163 (2018) 358-372. DOI: https://doi.org/10.1016/j.engstruct.2018.02.063
  • [33] Computers & Structures, INC, Structural and Earthquake Engineering Software, Introduction to CSI Bridge, 2017, U.S.A.
  • [34] B.A. Hamza, A.R. Radhi, Q. Al-Madhlom, Effect of (B/D) ratio on ultimate load capacity for horizontally curved box steel beam under out of plane concentrated load, Engineering Science and Technology: an International Journal 22/2 (2019) 533-537. DOI: https://doi.org/10.1016/j.jestch.2018.09.007
  • [35] A.K. Noor, J.M. Peters, B.J. Min, Mixed finite element models for free vibrations of thin-walled beams, Finite Elements in Analysis and Design 5/4 (1989) 291-305. DOI: https://doi.org/10.1016/0168-874X(89)90009-7
  • [36] M.A. Panicker, A. Mathai, Free vibration analysis on FRP bridges, American Journal of Engineering Research 4 (2013) 47-50.
  • [37] K.Y. Yoon, Y.J. Kang, Y.J. Choi, N.H. Park, Free vibration analysis of horizontally curved steel I-girder bridges, Thin-Walled Structures 43/4 (2005) 679-699. DOI: https://doi.org/10.1016/j.tws.2004.07.020
  • [38] J.M. Snyder, J.F. Wilson, Free vibrations of continuous horizontally curved beams, Journal of Sound and Vibration 157/2 (1992) 345-355. DOI: https://doi.org/10.1016/0022-460X(92)90686-R
  • [39] M.M. Tabba, C.J. Turkstra, Free vibrations of curved box girders, Journal of Sound and Vibration 54/4 (1977) 501-514. DOI: https://doi.org/10.1016/0022-460X(77)90608-3
  • [40] T.J. Memory, D.P. Thambiratnam, G.H. Brameld, Free vibration analysis of bridges, Engineering Structures 17/10 (1995) 705-713. DOI: https://doi.org/10.1016/0141-0296(95)00037-8
  • [41] C.H. Kou, S.E. Benzley, J.Y. Huang, D.A. Firmage, Free vibration analysis of curved thin-walled girder bridges, Journal of Structural Engineering 118/10 (1992) 2890-2910. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2890)
  • [42] G. Tan, W. Wang, Y. Jiao, Free vibration analysis of a cracked simply supported bridge considering bridge-vehicle interaction, Journal of Vibroengineering 18/6 (2016) 3608-3635. DOI: https://doi.org/10.21595/jve.2016.16908
  • [43] M.R. Awall, T. Hayashikawa, T. Humyra, M.B. Zisan, Free vibration characteristics of horizontally curved continuous multi I-girder bridge, Proceedings of the 3rd International Conference on Civil Engineering for Sustainable Development (ICCESD 2016), KUET, Khulna, Bangladesh, 2016, 730-736.
  • [44] H. Yin, Z. Li, and X. Hao, Research on structural dynamic characteristics of continuous steel box girder-bridge with lager ratio of wide-span, ITM Web of Conferences 17 (2018) 03008. DOI: https://doi.org/10.1051/itmconf/20181703008
  • [45] R. Wodzinowski, K. Sennah, H.M. Afefy, Free vibration analysis of horizontally curved composite concrete-steel I-girder bridges, Journal of Constructional Steel Research 140 (2018) 47-61. DOI: https://doi.org/10.1016/j.jcsr.2017.10.011
  • [46] V. Verma, K. Nallasivam, One-dimensional finite element analysis of thin-walled box-girder bridge, Innovative Infrastructure Solutions 5 (2020) 51. DOI: https://doi.org/10.1007/s41062-020-00287-x
  • [47] S.H. Zhang, L.P.R. Lyons, A thin-walled box beam finite element for curved bridge analysis, Computers & Structures 18/6 (1984) 1035-1046. DOI: https://doi.org/10.1016/0045-7949(84)90148-2
  • [48] D. Huang, Dynamic analysis of steel curved box girder bridges, Journal of Bridge Engineering 6 (2001) 506-513. DOI: https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(506)
  • [49] D. Huang, T.L. Wang, M. Shahawy, Vibration of horizontally curved box girder bridges due to vehicles, Computers & Structures 68/5 (1998) 513-528. DOI: https://doi.org/10.1016/S0045-7949(98)00065-0
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3e50add-02da-4208-a198-3f16695e6d34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.